KavithaSriK commited on
Commit
ce70399
·
verified ·
1 Parent(s): ad7608a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -51
app.py CHANGED
@@ -1,64 +1,73 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
 
 
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
4
 
5
+ # Device configuration
6
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
 
 
7
 
8
+ # Load models
9
+ fill_mask = pipeline("fill-mask", model="bert-base-uncased")
10
+ corrector = pipeline("text2text-generation", model="pszemraj/grammar-synthesis-small")
11
+ tokenizer = T5Tokenizer.from_pretrained("EnglishVoice/t5-base-uk-to-us-english")
12
+ model = T5ForConditionalGeneration.from_pretrained("EnglishVoice/t5-base-uk-to-us-english").to(device)
13
 
14
+ # Fill Mask Function
15
+ def fill_mask_function(text):
16
+ if "_" not in text:
17
+ return "Please add an underscore (_) where you want the mask to be predicted."
18
+ text_with_mask = text.replace("_", "[MASK]")
19
+ predictions = fill_mask(text_with_mask)
20
+ filtered = [p for p in predictions if p['token_str'].isalnum()]
21
+ if not filtered:
22
+ return "No valid predictions."
23
+ return "\n".join([f"{p['sequence']} (Score: {p['score']:.4f})" for p in filtered])
24
 
25
+ # Grammar Correction Function
26
+ def grammar_correction_function(text):
27
+ corrected = corrector(text)
28
+ return corrected[0]['generated_text']
 
29
 
30
+ # UK to US English Conversion
31
+ def uk_to_us_function(text):
32
+ try:
33
+ input_text = f"UK to US: {text}"
34
+ encoding = tokenizer.encode_plus(input_text, return_tensors="pt", padding=True, truncation=True, max_length=512)
35
+ input_ids = encoding["input_ids"].to(device)
36
+ attention_mask = encoding["attention_mask"].to(device)
37
 
38
+ output_ids = model.generate(
39
+ input_ids=input_ids,
40
+ attention_mask=attention_mask,
41
+ max_length=150,
42
+ num_beams=5,
43
+ early_stopping=True
44
+ )
45
+ result = tokenizer.decode(output_ids[0], skip_special_tokens=True)
46
+ return result
47
+ except Exception as e:
48
+ return f"Error: {str(e)}"
49
 
50
+ # Interface Function
51
+ def interface_function(choice, text):
52
+ if choice == "Fill Mask":
53
+ return fill_mask_function(text)
54
+ elif choice == "Grammar Correction":
55
+ return grammar_correction_function(text)
56
+ elif choice == "UK to US English":
57
+ return uk_to_us_function(text)
58
 
59
+ # Gradio Interface
60
+ iface = gr.Interface(
61
+ fn=interface_function,
62
+ inputs=[
63
+ gr.Radio(["Fill Mask", "Grammar Correction", "UK to US English"], label="Choose Functionality"),
64
+ gr.Textbox(lines=3, placeholder="Enter your text here...", label="Input Text")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
  ],
66
+ outputs=gr.Textbox(label="Output Result"),
67
+ title="Language Processing App",
68
+ description="Choose one of the functionalities and provide input text. Supported tasks:\n- Fill Mask: Predict missing words.\n- Grammar Correction: Correct grammatical errors.\n- UK to US English: Convert British English to American English."
69
  )
70
 
71
+ # Launch Interface
72
  if __name__ == "__main__":
73
+ iface.launch()