Spaces:
Running
Running
File size: 1,445 Bytes
0bf43ca 45ca673 0bf43ca 45ca673 0bf43ca 45ca673 0bf43ca 45ca673 0bf43ca 45ca673 0bf43ca 45ca673 0bf43ca 45ca673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 |
from openai import OpenAI
import streamlit as st
from langchain_openai import ChatOpenAI
from tools import sentiment_analysis_util
import numpy as np
from dotenv import load_dotenv
import os
st.title("💬 Chatbot")
st.caption("")
# Initialize session state for storing messages if it doesn't already exist
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "How can I help you?"}]
# Display all previous messages
for msg in st.session_state.messages:
st.chat_message(msg["role"]).write(msg["content"])
# Input for new prompts
prompt = st.chat_input("Enter your question:")
if prompt:
if not openai_api_key:
st.error("No OpenAI API key found. Please set the OPENAI_API_KEY environment variable.")
st.stop()
# Append the new user message to session state
st.session_state.messages.append({"role": "user", "content": prompt})
st.chat_message("user").write(prompt)
# Use a spinner to indicate that the model is generating a response
with st.spinner('Thinking...'):
client = OpenAI(api_key=openai_api_key)
response = client.chat.completions.create(model="gpt-3.5-turbo", messages=st.session_state.messages)
msg = response.choices[0].message.content
# Append and display the assistant's response
st.session_state.messages.append({"role": "assistant", "content": msg})
st.chat_message("assistant").write(msg) |