Update py/handle_files.py
Browse files- py/handle_files.py +102 -102
py/handle_files.py
CHANGED
@@ -1,103 +1,103 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
from datetime import datetime
|
4 |
-
import json
|
5 |
-
import os
|
6 |
-
import pickle
|
7 |
-
from typing import List
|
8 |
-
from langchain.schema import Document
|
9 |
-
import pandas as pd
|
10 |
-
|
11 |
-
def create_files(social_media_data):
|
12 |
-
folder_path = '
|
13 |
-
|
14 |
-
if not os.path.exists(folder_path):
|
15 |
-
os.makedirs(folder_path)
|
16 |
-
|
17 |
-
# Save dictionary to a file
|
18 |
-
with open(folder_path+'/social_media_data.json', 'w') as f:
|
19 |
-
json.dump(social_media_data, f)
|
20 |
-
|
21 |
-
# Convert the data to a pandas DataFrame
|
22 |
-
df = pd.DataFrame(social_media_data)
|
23 |
-
df.head()
|
24 |
-
|
25 |
-
# Exporting the data to a CSV file
|
26 |
-
file_path = folder_path+"/social_media_data.csv"
|
27 |
-
df.to_csv(file_path, index=False)
|
28 |
-
|
29 |
-
df.to_pickle(folder_path+"/social_media_data.pkl")
|
30 |
-
|
31 |
-
def fetch_social_media_data():
|
32 |
-
with open('
|
33 |
-
data = json.load(file)
|
34 |
-
social_media_document = []
|
35 |
-
for item in data:
|
36 |
-
social_media_document.append(Document(
|
37 |
-
page_content=str(item["page_content"]),
|
38 |
-
metadata={"platform":item["platform"],
|
39 |
-
"company":item["company"],
|
40 |
-
"ingestion_timestamp":datetime.now().isoformat(),
|
41 |
-
"word_count":len(item["page_content"]["content"])
|
42 |
-
}))
|
43 |
-
return social_media_document
|
44 |
-
|
45 |
-
def save_ingested_data(ingested_data):
|
46 |
-
# Save the list to a file
|
47 |
-
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'wb') as file:
|
48 |
-
pickle.dump(ingested_data, file)
|
49 |
-
|
50 |
-
def save_analysed_data(analysed_data):
|
51 |
-
# Save the list to a file
|
52 |
-
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'wb') as file:
|
53 |
-
pickle.dump(analysed_data, file)
|
54 |
-
|
55 |
-
def get_ingested_data():
|
56 |
-
# Load the list from the file
|
57 |
-
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'rb') as file:
|
58 |
-
loaded_documents = pickle.load(file)
|
59 |
-
return loaded_documents
|
60 |
-
|
61 |
-
def get_analysed_data():
|
62 |
-
# Load the list from the file
|
63 |
-
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'rb') as file:
|
64 |
-
loaded_documents = pickle.load(file)
|
65 |
-
return loaded_documents
|
66 |
-
|
67 |
-
def sample_documents(documents: List[Document], n: int) -> List[Document]:
|
68 |
-
"""
|
69 |
-
Samples `n` entries for each unique `"platform"` and `"company"` metadata combination from the input `Document[]`.
|
70 |
-
|
71 |
-
Args:
|
72 |
-
documents (List[Document]): The input list of `Document` objects.
|
73 |
-
n (int): The number of entries to sample for each unique metadata combination.
|
74 |
-
|
75 |
-
Returns:
|
76 |
-
List[Document]: A new list of `Document` objects, with `n` entries per unique metadata combination.
|
77 |
-
"""
|
78 |
-
# Create a dictionary to store the sampled documents per metadata combination
|
79 |
-
sampled_docs = {}
|
80 |
-
|
81 |
-
for doc in documents:
|
82 |
-
combo = (doc.metadata["platform"], doc.metadata["company"])
|
83 |
-
if combo not in sampled_docs:
|
84 |
-
sampled_docs[combo] = []
|
85 |
-
|
86 |
-
# Add the document to the list for its metadata combination, up to n entries
|
87 |
-
if len(sampled_docs[combo]) < n:
|
88 |
-
sampled_docs[combo].append(doc)
|
89 |
-
|
90 |
-
# Flatten the dictionary into a single list
|
91 |
-
return [doc for docs in sampled_docs.values() for doc in docs]
|
92 |
-
|
93 |
-
def to_documents(data) -> List[Document]:
|
94 |
-
social_media_document = []
|
95 |
-
for item in data:
|
96 |
-
social_media_document.append(Document(
|
97 |
-
page_content=str(item["page_content"]),
|
98 |
-
metadata={"platform":item["platform"],
|
99 |
-
"company":item["company"],
|
100 |
-
"ingestion_timestamp":datetime.now().isoformat(),
|
101 |
-
"word_count":len(item["page_content"]["content"])
|
102 |
-
}))
|
103 |
return social_media_document
|
|
|
1 |
+
|
2 |
+
|
3 |
+
from datetime import datetime
|
4 |
+
import json
|
5 |
+
import os
|
6 |
+
import pickle
|
7 |
+
from typing import List
|
8 |
+
from langchain.schema import Document
|
9 |
+
import pandas as pd
|
10 |
+
|
11 |
+
def create_files(social_media_data):
|
12 |
+
folder_path = 'files'
|
13 |
+
|
14 |
+
if not os.path.exists(folder_path):
|
15 |
+
os.makedirs(folder_path)
|
16 |
+
|
17 |
+
# Save dictionary to a file
|
18 |
+
with open(folder_path+'/social_media_data.json', 'w') as f:
|
19 |
+
json.dump(social_media_data, f)
|
20 |
+
|
21 |
+
# Convert the data to a pandas DataFrame
|
22 |
+
df = pd.DataFrame(social_media_data)
|
23 |
+
df.head()
|
24 |
+
|
25 |
+
# Exporting the data to a CSV file
|
26 |
+
file_path = folder_path+"/social_media_data.csv"
|
27 |
+
df.to_csv(file_path, index=False)
|
28 |
+
|
29 |
+
df.to_pickle(folder_path+"/social_media_data.pkl")
|
30 |
+
|
31 |
+
def fetch_social_media_data():
|
32 |
+
with open('files/social_media_data.json', 'r') as file:
|
33 |
+
data = json.load(file)
|
34 |
+
social_media_document = []
|
35 |
+
for item in data:
|
36 |
+
social_media_document.append(Document(
|
37 |
+
page_content=str(item["page_content"]),
|
38 |
+
metadata={"platform":item["platform"],
|
39 |
+
"company":item["company"],
|
40 |
+
"ingestion_timestamp":datetime.now().isoformat(),
|
41 |
+
"word_count":len(item["page_content"]["content"])
|
42 |
+
}))
|
43 |
+
return social_media_document
|
44 |
+
|
45 |
+
def save_ingested_data(ingested_data):
|
46 |
+
# Save the list to a file
|
47 |
+
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'wb') as file:
|
48 |
+
pickle.dump(ingested_data, file)
|
49 |
+
|
50 |
+
def save_analysed_data(analysed_data):
|
51 |
+
# Save the list to a file
|
52 |
+
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'wb') as file:
|
53 |
+
pickle.dump(analysed_data, file)
|
54 |
+
|
55 |
+
def get_ingested_data():
|
56 |
+
# Load the list from the file
|
57 |
+
with open('Stock Sentiment Analysis/files/ingested_data.pkl', 'rb') as file:
|
58 |
+
loaded_documents = pickle.load(file)
|
59 |
+
return loaded_documents
|
60 |
+
|
61 |
+
def get_analysed_data():
|
62 |
+
# Load the list from the file
|
63 |
+
with open('Stock Sentiment Analysis/files/analysed_data.pkl', 'rb') as file:
|
64 |
+
loaded_documents = pickle.load(file)
|
65 |
+
return loaded_documents
|
66 |
+
|
67 |
+
def sample_documents(documents: List[Document], n: int) -> List[Document]:
|
68 |
+
"""
|
69 |
+
Samples `n` entries for each unique `"platform"` and `"company"` metadata combination from the input `Document[]`.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
documents (List[Document]): The input list of `Document` objects.
|
73 |
+
n (int): The number of entries to sample for each unique metadata combination.
|
74 |
+
|
75 |
+
Returns:
|
76 |
+
List[Document]: A new list of `Document` objects, with `n` entries per unique metadata combination.
|
77 |
+
"""
|
78 |
+
# Create a dictionary to store the sampled documents per metadata combination
|
79 |
+
sampled_docs = {}
|
80 |
+
|
81 |
+
for doc in documents:
|
82 |
+
combo = (doc.metadata["platform"], doc.metadata["company"])
|
83 |
+
if combo not in sampled_docs:
|
84 |
+
sampled_docs[combo] = []
|
85 |
+
|
86 |
+
# Add the document to the list for its metadata combination, up to n entries
|
87 |
+
if len(sampled_docs[combo]) < n:
|
88 |
+
sampled_docs[combo].append(doc)
|
89 |
+
|
90 |
+
# Flatten the dictionary into a single list
|
91 |
+
return [doc for docs in sampled_docs.values() for doc in docs]
|
92 |
+
|
93 |
+
def to_documents(data) -> List[Document]:
|
94 |
+
social_media_document = []
|
95 |
+
for item in data:
|
96 |
+
social_media_document.append(Document(
|
97 |
+
page_content=str(item["page_content"]),
|
98 |
+
metadata={"platform":item["platform"],
|
99 |
+
"company":item["company"],
|
100 |
+
"ingestion_timestamp":datetime.now().isoformat(),
|
101 |
+
"word_count":len(item["page_content"]["content"])
|
102 |
+
}))
|
103 |
return social_media_document
|