Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,14 @@
|
|
1 |
import os
|
2 |
-
from collections.abc import Iterator
|
3 |
-
from threading import Thread
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import spaces
|
7 |
import torch
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
DESCRIPTION = """\
|
11 |
# EvaByte-SFT
|
12 |
|
13 |
-
EvaByte is a byte-level language model that combines multibyte prediction with the efficient EVA attention mechanism.
|
14 |
-
This page hosts [
|
15 |
For full details on architecture, training recipe, and benchmarks, see their blog post and the project repository:
|
16 |
|
17 |
- Blog: <https://hkunlp.github.io/blog/2025/evabyte>
|
@@ -25,71 +22,61 @@ MAX_INPUT_TOKEN_LENGTH = 32000
|
|
25 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
26 |
|
27 |
tokenizer = AutoTokenizer.from_pretrained("EvaByte/EvaByte", trust_remote_code=True)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
@spaces.GPU(duration=90)
|
31 |
def generate(
|
32 |
message: str,
|
33 |
chat_history: list[dict],
|
34 |
-
max_new_tokens: int =
|
35 |
temperature: float = 0.6,
|
36 |
top_p: float = 0.9,
|
37 |
-
) ->
|
|
|
38 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
41 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
42 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
43 |
-
gr.Warning(
|
|
|
|
|
|
|
44 |
input_ids = input_ids.to(model.device)
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
{"input_ids": input_ids},
|
49 |
-
#streamer=streamer,
|
50 |
max_new_tokens=max_new_tokens,
|
51 |
do_sample=True,
|
52 |
top_p=top_p,
|
53 |
temperature=temperature,
|
54 |
)
|
55 |
-
t = Thread(target=model.multi_byte_generate, kwargs=generate_kwargs)
|
56 |
-
t.start()
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
outputs.append(text)
|
61 |
-
yield "".join(outputs)
|
62 |
|
63 |
|
64 |
demo = gr.ChatInterface(
|
65 |
fn=generate,
|
66 |
additional_inputs=[
|
67 |
-
gr.Slider(
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
),
|
74 |
-
gr.Slider(
|
75 |
-
label="Temperature",
|
76 |
-
minimum=0.1,
|
77 |
-
maximum=4.0,
|
78 |
-
step=0.1,
|
79 |
-
value=0.6,
|
80 |
-
),
|
81 |
-
gr.Slider(
|
82 |
-
label="Top-p (nucleus sampling)",
|
83 |
-
minimum=0.05,
|
84 |
-
maximum=1.0,
|
85 |
-
step=0.05,
|
86 |
-
value=0.9,
|
87 |
-
),
|
88 |
-
],
|
89 |
-
stop_btn=None,
|
90 |
-
examples=[
|
91 |
-
["Write me an English pangram."],
|
92 |
],
|
|
|
|
|
93 |
cache_examples=False,
|
94 |
type="messages",
|
95 |
description=DESCRIPTION,
|
|
|
1 |
import os
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
import spaces
|
4 |
import torch
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
|
7 |
DESCRIPTION = """\
|
8 |
# EvaByte-SFT
|
9 |
|
10 |
+
EvaByte is a byte-level language model that combines multibyte prediction with the efficient EVA attention mechanism.
|
11 |
+
This page hosts [EvaByte/EvaByte-SFT](https://huggingface.co/EvaByte/EvaByte-SFT), fine-tuned via supervised instruction data to enable chat and general instruction-following capabilities.
|
12 |
For full details on architecture, training recipe, and benchmarks, see their blog post and the project repository:
|
13 |
|
14 |
- Blog: <https://hkunlp.github.io/blog/2025/evabyte>
|
|
|
22 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
23 |
|
24 |
tokenizer = AutoTokenizer.from_pretrained("EvaByte/EvaByte", trust_remote_code=True)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
"EvaByte/EvaByte-SFT",
|
27 |
+
torch_dtype=torch.bfloat16,
|
28 |
+
trust_remote_code=True,
|
29 |
+
).eval().to(device)
|
30 |
+
|
31 |
|
32 |
@spaces.GPU(duration=90)
|
33 |
def generate(
|
34 |
message: str,
|
35 |
chat_history: list[dict],
|
36 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
37 |
temperature: float = 0.6,
|
38 |
top_p: float = 0.9,
|
39 |
+
) -> str:
|
40 |
+
|
41 |
conversation = [*chat_history, {"role": "user", "content": message}]
|
42 |
+
input_ids = tokenizer.apply_chat_template(
|
43 |
+
conversation,
|
44 |
+
add_generation_prompt=True,
|
45 |
+
return_tensors="pt"
|
46 |
+
)
|
47 |
|
|
|
48 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
49 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
50 |
+
gr.Warning(
|
51 |
+
f"Trimmed input to the last {MAX_INPUT_TOKEN_LENGTH} tokens because it exceeded the limit."
|
52 |
+
)
|
53 |
+
|
54 |
input_ids = input_ids.to(model.device)
|
55 |
|
56 |
+
output_ids = model.multi_byte_generate(
|
57 |
+
input_ids=input_ids,
|
|
|
|
|
58 |
max_new_tokens=max_new_tokens,
|
59 |
do_sample=True,
|
60 |
top_p=top_p,
|
61 |
temperature=temperature,
|
62 |
)
|
|
|
|
|
63 |
|
64 |
+
generated_segment = output_ids[0][input_ids.shape[1]:]
|
65 |
+
return tokenizer.decode(generated_segment, skip_special_tokens=False, clean_up_tokenization_spaces=False)
|
|
|
|
|
66 |
|
67 |
|
68 |
demo = gr.ChatInterface(
|
69 |
fn=generate,
|
70 |
additional_inputs=[
|
71 |
+
gr.Slider("Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS,
|
72 |
+
step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
73 |
+
gr.Slider("Temperature", minimum=0.1, maximum=4.0,
|
74 |
+
step=0.1, value=0.6),
|
75 |
+
gr.Slider("Top-p (nucleus sampling)", minimum=0.05,
|
76 |
+
maximum=1.0, step=0.05, value=0.9),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
],
|
78 |
+
stop_btn=None,
|
79 |
+
examples=[["Write me an English pangram."]],
|
80 |
cache_examples=False,
|
81 |
type="messages",
|
82 |
description=DESCRIPTION,
|