KantaHayashiAI commited on
Commit
3d72f81
·
verified ·
1 Parent(s): 180f2bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +93 -40
app.py CHANGED
@@ -1,64 +1,117 @@
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
3
 
 
 
 
 
 
 
4
  """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
 
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
 
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
38
 
39
- response += token
40
- yield response
 
 
41
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
  gr.Slider(
 
 
 
 
 
 
 
 
53
  minimum=0.1,
 
 
 
 
 
 
 
54
  maximum=1.0,
55
- value=0.95,
56
  step=0.05,
57
- label="Top-p (nucleus sampling)",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
58
  ),
59
  ],
 
 
 
 
 
 
 
 
 
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
+ from collections.abc import Iterator
3
+ from threading import Thread
4
+
5
  import gradio as gr
6
+ import spaces
7
+ import torch
8
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
9
 
10
+ DESCRIPTION = """\
11
+ # Llama 3.2 3B Instruct
12
+
13
+ Llama 3.2 3B is Meta's latest iteration of open LLMs.
14
+ This is a demo of [`meta-llama/Llama-3.2-3B-Instruct`](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct), fine-tuned for instruction following.
15
+ For more details, please check [our post](https://huggingface.co/blog/llama32).
16
  """
 
 
 
17
 
18
+ MAX_MAX_NEW_TOKENS = 2048
19
+ DEFAULT_MAX_NEW_TOKENS = 1024
20
+ MAX_INPUT_TOKEN_LENGTH = 32000
21
 
22
+ device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
 
 
 
 
 
 
 
23
 
24
+ tokenizer = AutoTokenizer.from_pretrained("evabyte/EvaByte-SFT", trust_remote_code=True)
25
+ model = AutoModelForCausalLM.from_pretrained("evabyte/EvaByte-SFT", torch_dtype=torch.bfloat16, trust_remote_code=True).eval().to("cuda")
 
 
 
26
 
27
+ @spaces.GPU(duration=120)
28
+ def generate(
29
+ message: str,
30
+ chat_history: list[dict],
31
+ max_new_tokens: int = 1024,
32
+ temperature: float = 0.6,
33
+ top_p: float = 0.9,
34
+ top_k: int = 50,
35
+ repetition_penalty: float = 1.2,
36
+ ) -> Iterator[str]:
37
+ conversation = [*chat_history, {"role": "user", "content": message}]
38
 
39
+ input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
40
+ if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
41
+ input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
42
+ gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
43
+ input_ids = input_ids.to(model.device)
44
 
45
+ streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
46
+ generate_kwargs = dict(
47
+ {"input_ids": input_ids},
48
+ streamer=streamer,
49
+ max_new_tokens=max_new_tokens,
50
+ do_sample=True,
51
  top_p=top_p,
52
+ top_k=top_k,
53
+ temperature=temperature,
54
+ num_beams=1,
55
+ repetition_penalty=repetition_penalty,
56
+ )
57
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
58
+ t.start()
59
 
60
+ outputs = []
61
+ for text in streamer:
62
+ outputs.append(text)
63
+ yield "".join(outputs)
64
 
65
 
 
 
 
66
  demo = gr.ChatInterface(
67
+ fn=generate,
68
  additional_inputs=[
 
 
 
69
  gr.Slider(
70
+ label="Max new tokens",
71
+ minimum=1,
72
+ maximum=MAX_MAX_NEW_TOKENS,
73
+ step=1,
74
+ value=DEFAULT_MAX_NEW_TOKENS,
75
+ ),
76
+ gr.Slider(
77
+ label="Temperature",
78
  minimum=0.1,
79
+ maximum=4.0,
80
+ step=0.1,
81
+ value=0.6,
82
+ ),
83
+ gr.Slider(
84
+ label="Top-p (nucleus sampling)",
85
+ minimum=0.05,
86
  maximum=1.0,
 
87
  step=0.05,
88
+ value=0.9,
89
+ ),
90
+ gr.Slider(
91
+ label="Top-k",
92
+ minimum=1,
93
+ maximum=1000,
94
+ step=1,
95
+ value=50,
96
+ ),
97
+ gr.Slider(
98
+ label="Repetition penalty",
99
+ minimum=1.0,
100
+ maximum=2.0,
101
+ step=0.05,
102
+ value=1.2,
103
  ),
104
  ],
105
+ stop_btn=None,
106
+ examples=[
107
+ ["Write me an English pangram."],
108
+ ],
109
+ cache_examples=False,
110
+ type="messages",
111
+ description=DESCRIPTION,
112
+ css_paths="style.css",
113
+ fill_height=True,
114
  )
115
 
 
116
  if __name__ == "__main__":
117
+ demo.queue(max_size=20).launch()