Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import spaces | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
DESCRIPTION = """\ | |
# EvaByte [Byte-Level LLM] | |
EvaByte is a efficient byte-level language model with multibyte prediction and EVA attention, built by the University of Hong Kong and SambaNova Systems. | |
This Space is an unofficial demo of the instruction-tuned version [EvaByte/EvaByte-SFT](https://huggingface.co/EvaByte/EvaByte-SFT). | |
For full details on architecture, training recipe, and benchmarks, see their blog post and the project repository: | |
- Blog: <https://hkunlp.github.io/blog/2025/evabyte> | |
- GitHub: <https://github.com/OpenEvaByte/evabyte> | |
If you liked this Space, follow me on Twitter: [@KantaHayashiAI](https://x.com/KantaHayashiAI) | |
""" | |
MAX_MAX_NEW_TOKENS = 2048 | |
DEFAULT_MAX_NEW_TOKENS = 1024 | |
MAX_INPUT_TOKEN_LENGTH = 32000 | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
tokenizer = AutoTokenizer.from_pretrained("EvaByte/EvaByte-SFT", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained( | |
"EvaByte/EvaByte-SFT", | |
torch_dtype=torch.bfloat16, | |
trust_remote_code=True, | |
).eval().to(device) | |
def generate( | |
message: str, | |
chat_history: list[dict], | |
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS, | |
temperature: float = 0.6, | |
top_p: float = 0.9, | |
) -> str: | |
conversation = [*chat_history, {"role": "user", "content": message}] | |
input_ids = tokenizer.apply_chat_template( | |
conversation, | |
add_generation_prompt=True, | |
return_tensors="pt" | |
) | |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: | |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] | |
gr.Warning( | |
f"Trimmed input to the last {MAX_INPUT_TOKEN_LENGTH} tokens because it exceeded the limit." | |
) | |
input_ids = input_ids.to(model.device) | |
output_ids = model.multi_byte_generate( | |
input_ids=input_ids, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
temperature=temperature, | |
) | |
generated_segment = output_ids[0][input_ids.shape[1]:] | |
return tokenizer.decode(generated_segment, skip_special_tokens=True) | |
demo = gr.ChatInterface( | |
fn=generate, | |
additional_inputs=[ | |
gr.Slider( | |
label="Max new tokens", | |
minimum=1, | |
maximum=MAX_MAX_NEW_TOKENS, | |
step=1, | |
value=DEFAULT_MAX_NEW_TOKENS, | |
), | |
gr.Slider( | |
label="Temperature", | |
minimum=0, | |
maximum=4.0, | |
step=0.1, | |
value=0, | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
minimum=0.05, | |
maximum=1.0, | |
step=0.05, | |
value=1.0, | |
), | |
], | |
stop_btn=None, | |
examples=[["Write me an English pangram."]], | |
cache_examples=False, | |
type="messages", | |
description=DESCRIPTION, | |
fill_height=True, | |
) | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() |