EvaByte-SFT / app.py
KantaHayashiAI's picture
Update app.py
ff711c8 verified
import os
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
DESCRIPTION = """\
# EvaByte [Byte-Level LLM]
EvaByte is a efficient byte-level language model with multibyte prediction and EVA attention, built by the University of Hong Kong and SambaNova Systems.
This Space is an unofficial demo of the instruction-tuned version [EvaByte/EvaByte-SFT](https://huggingface.co/EvaByte/EvaByte-SFT).
For full details on architecture, training recipe, and benchmarks, see their blog post and the project repository:
- Blog: <https://hkunlp.github.io/blog/2025/evabyte>
- GitHub: <https://github.com/OpenEvaByte/evabyte>
If you liked this Space, follow me on Twitter: [@KantaHayashiAI](https://x.com/KantaHayashiAI)
"""
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = 32000
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoTokenizer.from_pretrained("EvaByte/EvaByte-SFT", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"EvaByte/EvaByte-SFT",
torch_dtype=torch.bfloat16,
trust_remote_code=True,
).eval().to(device)
@spaces.GPU(duration=60)
def generate(
message: str,
chat_history: list[dict],
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
temperature: float = 0.6,
top_p: float = 0.9,
) -> str:
conversation = [*chat_history, {"role": "user", "content": message}]
input_ids = tokenizer.apply_chat_template(
conversation,
add_generation_prompt=True,
return_tensors="pt"
)
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(
f"Trimmed input to the last {MAX_INPUT_TOKEN_LENGTH} tokens because it exceeded the limit."
)
input_ids = input_ids.to(model.device)
output_ids = model.multi_byte_generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
temperature=temperature,
)
generated_segment = output_ids[0][input_ids.shape[1]:]
return tokenizer.decode(generated_segment, skip_special_tokens=True)
demo = gr.ChatInterface(
fn=generate,
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0,
maximum=4.0,
step=0.1,
value=0,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=1.0,
),
],
stop_btn=None,
examples=[["Write me an English pangram."]],
cache_examples=False,
type="messages",
description=DESCRIPTION,
fill_height=True,
)
if __name__ == "__main__":
demo.queue(max_size=20).launch()