Spaces:
Running
Running
import os | |
from pathlib import Path | |
from typing import Optional, Tuple, Union | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar, _load_waveform | |
FOLDER_IN_ARCHIVE = "SpeechCommands" | |
URL = "speech_commands_v0.02" | |
HASH_DIVIDER = "_nohash_" | |
EXCEPT_FOLDER = "_background_noise_" | |
SAMPLE_RATE = 16000 | |
_CHECKSUMS = { | |
"http://download.tensorflow.org/data/speech_commands_v0.01.tar.gz": "743935421bb51cccdb6bdd152e04c5c70274e935c82119ad7faeec31780d811d", # noqa: E501 | |
"http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz": "af14739ee7dc311471de98f5f9d2c9191b18aedfe957f4a6ff791c709868ff58", # noqa: E501 | |
} | |
def _load_list(root, *filenames): | |
output = [] | |
for filename in filenames: | |
filepath = os.path.join(root, filename) | |
with open(filepath) as fileobj: | |
output += [os.path.normpath(os.path.join(root, line.strip())) for line in fileobj] | |
return output | |
def _get_speechcommands_metadata(filepath: str, path: str) -> Tuple[str, int, str, str, int]: | |
relpath = os.path.relpath(filepath, path) | |
reldir, filename = os.path.split(relpath) | |
_, label = os.path.split(reldir) | |
# Besides the officially supported split method for datasets defined by "validation_list.txt" | |
# and "testing_list.txt" over "speech_commands_v0.0x.tar.gz" archives, an alternative split | |
# method referred to in paragraph 2-3 of Section 7.1, references 13 and 14 of the original | |
# paper, and the checksums file from the tensorflow_datasets package [1] is also supported. | |
# Some filenames in those "speech_commands_test_set_v0.0x.tar.gz" archives have the form | |
# "xxx.wav.wav", so file extensions twice needs to be stripped twice. | |
# [1] https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/url_checksums/speech_commands.txt | |
speaker, _ = os.path.splitext(filename) | |
speaker, _ = os.path.splitext(speaker) | |
speaker_id, utterance_number = speaker.split(HASH_DIVIDER) | |
utterance_number = int(utterance_number) | |
return relpath, SAMPLE_RATE, label, speaker_id, utterance_number | |
class SPEECHCOMMANDS(Dataset): | |
"""*Speech Commands* :cite:`speechcommandsv2` dataset. | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
url (str, optional): The URL to download the dataset from, | |
or the type of the dataset to dowload. | |
Allowed type values are ``"speech_commands_v0.01"`` and ``"speech_commands_v0.02"`` | |
(default: ``"speech_commands_v0.02"``) | |
folder_in_archive (str, optional): | |
The top-level directory of the dataset. (default: ``"SpeechCommands"``) | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
subset (str or None, optional): | |
Select a subset of the dataset [None, "training", "validation", "testing"]. None means | |
the whole dataset. "validation" and "testing" are defined in "validation_list.txt" and | |
"testing_list.txt", respectively, and "training" is the rest. Details for the files | |
"validation_list.txt" and "testing_list.txt" are explained in the README of the dataset | |
and in the introduction of Section 7 of the original paper and its reference 12. The | |
original paper can be found `here <https://arxiv.org/pdf/1804.03209.pdf>`_. (Default: ``None``) | |
""" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
url: str = URL, | |
folder_in_archive: str = FOLDER_IN_ARCHIVE, | |
download: bool = False, | |
subset: Optional[str] = None, | |
) -> None: | |
if subset is not None and subset not in ["training", "validation", "testing"]: | |
raise ValueError("When `subset` is not None, it must be one of ['training', 'validation', 'testing'].") | |
if url in [ | |
"speech_commands_v0.01", | |
"speech_commands_v0.02", | |
]: | |
base_url = "http://download.tensorflow.org/data/" | |
ext_archive = ".tar.gz" | |
url = os.path.join(base_url, url + ext_archive) | |
# Get string representation of 'root' in case Path object is passed | |
root = os.fspath(root) | |
self._archive = os.path.join(root, folder_in_archive) | |
basename = os.path.basename(url) | |
archive = os.path.join(root, basename) | |
basename = basename.rsplit(".", 2)[0] | |
folder_in_archive = os.path.join(folder_in_archive, basename) | |
self._path = os.path.join(root, folder_in_archive) | |
if download: | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
checksum = _CHECKSUMS.get(url, None) | |
download_url_to_file(url, archive, hash_prefix=checksum) | |
_extract_tar(archive, self._path) | |
else: | |
if not os.path.exists(self._path): | |
raise RuntimeError( | |
f"The path {self._path} doesn't exist. " | |
"Please check the ``root`` path or set `download=True` to download it" | |
) | |
if subset == "validation": | |
self._walker = _load_list(self._path, "validation_list.txt") | |
elif subset == "testing": | |
self._walker = _load_list(self._path, "testing_list.txt") | |
elif subset == "training": | |
excludes = set(_load_list(self._path, "validation_list.txt", "testing_list.txt")) | |
walker = sorted(str(p) for p in Path(self._path).glob("*/*.wav")) | |
self._walker = [ | |
w | |
for w in walker | |
if HASH_DIVIDER in w and EXCEPT_FOLDER not in w and os.path.normpath(w) not in excludes | |
] | |
else: | |
walker = sorted(str(p) for p in Path(self._path).glob("*/*.wav")) | |
self._walker = [w for w in walker if HASH_DIVIDER in w and EXCEPT_FOLDER not in w] | |
def get_metadata(self, n: int) -> Tuple[str, int, str, str, int]: | |
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, | |
but otherwise returns the same fields as :py:func:`__getitem__`. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
str: | |
Path to the audio | |
int: | |
Sample rate | |
str: | |
Label | |
str: | |
Speaker ID | |
int: | |
Utterance number | |
""" | |
fileid = self._walker[n] | |
return _get_speechcommands_metadata(fileid, self._archive) | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
Label | |
str: | |
Speaker ID | |
int: | |
Utterance number | |
""" | |
metadata = self.get_metadata(n) | |
waveform = _load_waveform(self._archive, metadata[0], metadata[1]) | |
return (waveform,) + metadata[1:] | |
def __len__(self) -> int: | |
return len(self._walker) | |