Spaces:
Running
Running
import os | |
from pathlib import Path | |
from typing import Tuple, Union | |
import torchaudio | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar | |
URL = "train-clean-100" | |
FOLDER_IN_ARCHIVE = "LibriTTS" | |
_CHECKSUMS = { | |
"http://www.openslr.org/resources/60/dev-clean.tar.gz": "da0864e1bd26debed35da8a869dd5c04dfc27682921936de7cff9c8a254dbe1a", # noqa: E501 | |
"http://www.openslr.org/resources/60/dev-other.tar.gz": "d413eda26f3a152ac7c9cf3658ef85504dfb1b625296e5fa83727f5186cca79c", # noqa: E501 | |
"http://www.openslr.org/resources/60/test-clean.tar.gz": "234ea5b25859102a87024a4b9b86641f5b5aaaf1197335c95090cde04fe9a4f5", # noqa: E501 | |
"http://www.openslr.org/resources/60/test-other.tar.gz": "33a5342094f3bba7ccc2e0500b9e72d558f72eb99328ac8debe1d9080402f10d", # noqa: E501 | |
"http://www.openslr.org/resources/60/train-clean-100.tar.gz": "c5608bf1ef74bb621935382b8399c5cdd51cd3ee47cec51f00f885a64c6c7f6b", # noqa: E501 | |
"http://www.openslr.org/resources/60/train-clean-360.tar.gz": "ce7cff44dcac46009d18379f37ef36551123a1dc4e5c8e4eb73ae57260de4886", # noqa: E501 | |
"http://www.openslr.org/resources/60/train-other-500.tar.gz": "e35f7e34deeb2e2bdfe4403d88c8fdd5fbf64865cae41f027a185a6965f0a5df", # noqa: E501 | |
} | |
def load_libritts_item( | |
fileid: str, | |
path: str, | |
ext_audio: str, | |
ext_original_txt: str, | |
ext_normalized_txt: str, | |
) -> Tuple[Tensor, int, str, str, int, int, str]: | |
speaker_id, chapter_id, segment_id, utterance_id = fileid.split("_") | |
utterance_id = fileid | |
normalized_text = utterance_id + ext_normalized_txt | |
normalized_text = os.path.join(path, speaker_id, chapter_id, normalized_text) | |
original_text = utterance_id + ext_original_txt | |
original_text = os.path.join(path, speaker_id, chapter_id, original_text) | |
file_audio = utterance_id + ext_audio | |
file_audio = os.path.join(path, speaker_id, chapter_id, file_audio) | |
# Load audio | |
waveform, sample_rate = torchaudio.load(file_audio) | |
# Load original text | |
with open(original_text) as ft: | |
original_text = ft.readline() | |
# Load normalized text | |
with open(normalized_text, "r") as ft: | |
normalized_text = ft.readline() | |
return ( | |
waveform, | |
sample_rate, | |
original_text, | |
normalized_text, | |
int(speaker_id), | |
int(chapter_id), | |
utterance_id, | |
) | |
class LIBRITTS(Dataset): | |
"""*LibriTTS* :cite:`Zen2019LibriTTSAC` dataset. | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
url (str, optional): The URL to download the dataset from, | |
or the type of the dataset to dowload. | |
Allowed type values are ``"dev-clean"``, ``"dev-other"``, ``"test-clean"``, | |
``"test-other"``, ``"train-clean-100"``, ``"train-clean-360"`` and | |
``"train-other-500"``. (default: ``"train-clean-100"``) | |
folder_in_archive (str, optional): | |
The top-level directory of the dataset. (default: ``"LibriTTS"``) | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
""" | |
_ext_original_txt = ".original.txt" | |
_ext_normalized_txt = ".normalized.txt" | |
_ext_audio = ".wav" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
url: str = URL, | |
folder_in_archive: str = FOLDER_IN_ARCHIVE, | |
download: bool = False, | |
) -> None: | |
if url in [ | |
"dev-clean", | |
"dev-other", | |
"test-clean", | |
"test-other", | |
"train-clean-100", | |
"train-clean-360", | |
"train-other-500", | |
]: | |
ext_archive = ".tar.gz" | |
base_url = "http://www.openslr.org/resources/60/" | |
url = os.path.join(base_url, url + ext_archive) | |
# Get string representation of 'root' in case Path object is passed | |
root = os.fspath(root) | |
basename = os.path.basename(url) | |
archive = os.path.join(root, basename) | |
basename = basename.split(".")[0] | |
folder_in_archive = os.path.join(folder_in_archive, basename) | |
self._path = os.path.join(root, folder_in_archive) | |
if download: | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
checksum = _CHECKSUMS.get(url, None) | |
download_url_to_file(url, archive, hash_prefix=checksum) | |
_extract_tar(archive) | |
else: | |
if not os.path.exists(self._path): | |
raise RuntimeError( | |
f"The path {self._path} doesn't exist. " | |
"Please check the ``root`` path or set `download=True` to download it" | |
) | |
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*/*/*" + self._ext_audio)) | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str, int, int, str]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
Original text | |
str: | |
Normalized text | |
int: | |
Speaker ID | |
int: | |
Chapter ID | |
str: | |
Utterance ID | |
""" | |
fileid = self._walker[n] | |
return load_libritts_item( | |
fileid, | |
self._path, | |
self._ext_audio, | |
self._ext_original_txt, | |
self._ext_normalized_txt, | |
) | |
def __len__(self) -> int: | |
return len(self._walker) | |