File size: 5,217 Bytes
864affd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
# To use this file, the dependency (https://github.com/vesis84/kaldi-io-for-python)
# needs to be installed. This is a light wrapper around kaldi_io that returns
# torch.Tensors.
from typing import Any, Callable, Iterable, Tuple

import torch
from torch import Tensor
from torchaudio._internal import module_utils as _mod_utils

if _mod_utils.is_module_available("numpy"):
    import numpy as np


__all__ = [
    "read_vec_int_ark",
    "read_vec_flt_scp",
    "read_vec_flt_ark",
    "read_mat_scp",
    "read_mat_ark",
]


def _convert_method_output_to_tensor(

    file_or_fd: Any, fn: Callable, convert_contiguous: bool = False

) -> Iterable[Tuple[str, Tensor]]:
    r"""Takes a method invokes it. The output is converted to a tensor.



    Args:

        file_or_fd (str/FileDescriptor): File name or file descriptor

        fn (Callable): Function that has the signature (file name/descriptor) and converts it to

            Iterable[Tuple[str, Tensor]].

        convert_contiguous (bool, optional): Determines whether the array should be converted into a

            contiguous layout. (Default: ``False``)



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is vec/mat

    """
    for key, np_arr in fn(file_or_fd):
        if convert_contiguous:
            np_arr = np.ascontiguousarray(np_arr)
        yield key, torch.from_numpy(np_arr)


@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_int_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
    r"""Create generator of (key,vector<int>) tuples, which reads from the ark file/stream.



    Args:

        file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file



    Example

        >>> # read ark to a 'dictionary'

        >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_int_ark(file) }

    """

    import kaldi_io

    # Requires convert_contiguous to be True because elements from int32 vector are
    # sorted in tuples: (sizeof(int32), value) so strides are (5,) instead of (4,) which will throw an error
    # in from_numpy as it expects strides to be a multiple of 4 (int32).
    return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_int_ark, convert_contiguous=True)


@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_flt_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
    r"""Create generator of (key,vector<float32/float64>) tuples, read according to Kaldi scp.



    Args:

        file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file



    Example

        >>> # read scp to a 'dictionary'

        >>> # d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_scp(file) }

    """

    import kaldi_io

    return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_scp)


@_mod_utils.requires_module("kaldi_io", "numpy")
def read_vec_flt_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
    r"""Create generator of (key,vector<float32/float64>) tuples, which reads from the ark file/stream.



    Args:

        file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file



    Example

        >>> # read ark to a 'dictionary'

        >>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_ark(file) }

    """

    import kaldi_io

    return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_ark)


@_mod_utils.requires_module("kaldi_io", "numpy")
def read_mat_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
    r"""Create generator of (key,matrix<float32/float64>) tuples, read according to Kaldi scp.



    Args:

        file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file



    Example

        >>> # read scp to a 'dictionary'

        >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_scp(file) }

    """

    import kaldi_io

    return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_scp)


@_mod_utils.requires_module("kaldi_io", "numpy")
def read_mat_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]:
    r"""Create generator of (key,matrix<float32/float64>) tuples, which reads from the ark file/stream.



    Args:

        file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor



    Returns:

        Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file



    Example

        >>> # read ark to a 'dictionary'

        >>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_ark(file) }

    """

    import kaldi_io

    return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_ark)