Spaces:
Running
Running
File size: 37,479 Bytes
864affd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 |
import math
from typing import Tuple
import torch
import torchaudio
from torch import Tensor
__all__ = [
"get_mel_banks",
"inverse_mel_scale",
"inverse_mel_scale_scalar",
"mel_scale",
"mel_scale_scalar",
"spectrogram",
"fbank",
"mfcc",
"vtln_warp_freq",
"vtln_warp_mel_freq",
]
# numeric_limits<float>::epsilon() 1.1920928955078125e-07
EPSILON = torch.tensor(torch.finfo(torch.float).eps)
# 1 milliseconds = 0.001 seconds
MILLISECONDS_TO_SECONDS = 0.001
# window types
HAMMING = "hamming"
HANNING = "hanning"
POVEY = "povey"
RECTANGULAR = "rectangular"
BLACKMAN = "blackman"
WINDOWS = [HAMMING, HANNING, POVEY, RECTANGULAR, BLACKMAN]
def _get_epsilon(device, dtype):
return EPSILON.to(device=device, dtype=dtype)
def _next_power_of_2(x: int) -> int:
r"""Returns the smallest power of 2 that is greater than x"""
return 1 if x == 0 else 2 ** (x - 1).bit_length()
def _get_strided(waveform: Tensor, window_size: int, window_shift: int, snip_edges: bool) -> Tensor:
r"""Given a waveform (1D tensor of size ``num_samples``), it returns a 2D tensor (m, ``window_size``)
representing how the window is shifted along the waveform. Each row is a frame.
Args:
waveform (Tensor): Tensor of size ``num_samples``
window_size (int): Frame length
window_shift (int): Frame shift
snip_edges (bool): If True, end effects will be handled by outputting only frames that completely fit
in the file, and the number of frames depends on the frame_length. If False, the number of frames
depends only on the frame_shift, and we reflect the data at the ends.
Returns:
Tensor: 2D tensor of size (m, ``window_size``) where each row is a frame
"""
assert waveform.dim() == 1
num_samples = waveform.size(0)
strides = (window_shift * waveform.stride(0), waveform.stride(0))
if snip_edges:
if num_samples < window_size:
return torch.empty((0, 0), dtype=waveform.dtype, device=waveform.device)
else:
m = 1 + (num_samples - window_size) // window_shift
else:
reversed_waveform = torch.flip(waveform, [0])
m = (num_samples + (window_shift // 2)) // window_shift
pad = window_size // 2 - window_shift // 2
pad_right = reversed_waveform
if pad > 0:
# torch.nn.functional.pad returns [2,1,0,1,2] for 'reflect'
# but we want [2, 1, 0, 0, 1, 2]
pad_left = reversed_waveform[-pad:]
waveform = torch.cat((pad_left, waveform, pad_right), dim=0)
else:
# pad is negative so we want to trim the waveform at the front
waveform = torch.cat((waveform[-pad:], pad_right), dim=0)
sizes = (m, window_size)
return waveform.as_strided(sizes, strides)
def _feature_window_function(
window_type: str,
window_size: int,
blackman_coeff: float,
device: torch.device,
dtype: int,
) -> Tensor:
r"""Returns a window function with the given type and size"""
if window_type == HANNING:
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype)
elif window_type == HAMMING:
return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype)
elif window_type == POVEY:
# like hanning but goes to zero at edges
return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85)
elif window_type == RECTANGULAR:
return torch.ones(window_size, device=device, dtype=dtype)
elif window_type == BLACKMAN:
a = 2 * math.pi / (window_size - 1)
window_function = torch.arange(window_size, device=device, dtype=dtype)
# can't use torch.blackman_window as they use different coefficients
return (
blackman_coeff
- 0.5 * torch.cos(a * window_function)
+ (0.5 - blackman_coeff) * torch.cos(2 * a * window_function)
).to(device=device, dtype=dtype)
else:
raise Exception("Invalid window type " + window_type)
def _get_log_energy(strided_input: Tensor, epsilon: Tensor, energy_floor: float) -> Tensor:
r"""Returns the log energy of size (m) for a strided_input (m,*)"""
device, dtype = strided_input.device, strided_input.dtype
log_energy = torch.max(strided_input.pow(2).sum(1), epsilon).log() # size (m)
if energy_floor == 0.0:
return log_energy
return torch.max(log_energy, torch.tensor(math.log(energy_floor), device=device, dtype=dtype))
def _get_waveform_and_window_properties(
waveform: Tensor,
channel: int,
sample_frequency: float,
frame_shift: float,
frame_length: float,
round_to_power_of_two: bool,
preemphasis_coefficient: float,
) -> Tuple[Tensor, int, int, int]:
r"""Gets the waveform and window properties"""
channel = max(channel, 0)
assert channel < waveform.size(0), "Invalid channel {} for size {}".format(channel, waveform.size(0))
waveform = waveform[channel, :] # size (n)
window_shift = int(sample_frequency * frame_shift * MILLISECONDS_TO_SECONDS)
window_size = int(sample_frequency * frame_length * MILLISECONDS_TO_SECONDS)
padded_window_size = _next_power_of_2(window_size) if round_to_power_of_two else window_size
assert 2 <= window_size <= len(waveform), "choose a window size {} that is [2, {}]".format(
window_size, len(waveform)
)
assert 0 < window_shift, "`window_shift` must be greater than 0"
assert padded_window_size % 2 == 0, (
"the padded `window_size` must be divisible by two." " use `round_to_power_of_two` or change `frame_length`"
)
assert 0.0 <= preemphasis_coefficient <= 1.0, "`preemphasis_coefficient` must be between [0,1]"
assert sample_frequency > 0, "`sample_frequency` must be greater than zero"
return waveform, window_shift, window_size, padded_window_size
def _get_window(
waveform: Tensor,
padded_window_size: int,
window_size: int,
window_shift: int,
window_type: str,
blackman_coeff: float,
snip_edges: bool,
raw_energy: bool,
energy_floor: float,
dither: float,
remove_dc_offset: bool,
preemphasis_coefficient: float,
) -> Tuple[Tensor, Tensor]:
r"""Gets a window and its log energy
Returns:
(Tensor, Tensor): strided_input of size (m, ``padded_window_size``) and signal_log_energy of size (m)
"""
device, dtype = waveform.device, waveform.dtype
epsilon = _get_epsilon(device, dtype)
# size (m, window_size)
strided_input = _get_strided(waveform, window_size, window_shift, snip_edges)
if dither != 0.0:
rand_gauss = torch.randn(strided_input.shape, device=device, dtype=dtype)
strided_input = strided_input + rand_gauss * dither
if remove_dc_offset:
# Subtract each row/frame by its mean
row_means = torch.mean(strided_input, dim=1).unsqueeze(1) # size (m, 1)
strided_input = strided_input - row_means
if raw_energy:
# Compute the log energy of each row/frame before applying preemphasis and
# window function
signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m)
if preemphasis_coefficient != 0.0:
# strided_input[i,j] -= preemphasis_coefficient * strided_input[i, max(0, j-1)] for all i,j
offset_strided_input = torch.nn.functional.pad(strided_input.unsqueeze(0), (1, 0), mode="replicate").squeeze(
0
) # size (m, window_size + 1)
strided_input = strided_input - preemphasis_coefficient * offset_strided_input[:, :-1]
# Apply window_function to each row/frame
window_function = _feature_window_function(window_type, window_size, blackman_coeff, device, dtype).unsqueeze(
0
) # size (1, window_size)
strided_input = strided_input * window_function # size (m, window_size)
# Pad columns with zero until we reach size (m, padded_window_size)
if padded_window_size != window_size:
padding_right = padded_window_size - window_size
strided_input = torch.nn.functional.pad(
strided_input.unsqueeze(0), (0, padding_right), mode="constant", value=0
).squeeze(0)
# Compute energy after window function (not the raw one)
if not raw_energy:
signal_log_energy = _get_log_energy(strided_input, epsilon, energy_floor) # size (m)
return strided_input, signal_log_energy
def _subtract_column_mean(tensor: Tensor, subtract_mean: bool) -> Tensor:
# subtracts the column mean of the tensor size (m, n) if subtract_mean=True
# it returns size (m, n)
if subtract_mean:
col_means = torch.mean(tensor, dim=0).unsqueeze(0)
tensor = tensor - col_means
return tensor
def spectrogram(
waveform: Tensor,
blackman_coeff: float = 0.42,
channel: int = -1,
dither: float = 0.0,
energy_floor: float = 1.0,
frame_length: float = 25.0,
frame_shift: float = 10.0,
min_duration: float = 0.0,
preemphasis_coefficient: float = 0.97,
raw_energy: bool = True,
remove_dc_offset: bool = True,
round_to_power_of_two: bool = True,
sample_frequency: float = 16000.0,
snip_edges: bool = True,
subtract_mean: bool = False,
window_type: str = POVEY,
) -> Tensor:
r"""Create a spectrogram from a raw audio signal. This matches the input/output of Kaldi's
compute-spectrogram-feats.
Args:
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
to FFT. (Default: ``True``)
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
specified there) (Default: ``16000.0``)
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
in the file, and the number of frames depends on the frame_length. If False, the number of frames
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
it this way. (Default: ``False``)
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
(Default: ``'povey'``)
Returns:
Tensor: A spectrogram identical to what Kaldi would output. The shape is
(m, ``padded_window_size // 2 + 1``) where m is calculated in _get_strided
"""
device, dtype = waveform.device, waveform.dtype
epsilon = _get_epsilon(device, dtype)
waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties(
waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient
)
if len(waveform) < min_duration * sample_frequency:
# signal is too short
return torch.empty(0)
strided_input, signal_log_energy = _get_window(
waveform,
padded_window_size,
window_size,
window_shift,
window_type,
blackman_coeff,
snip_edges,
raw_energy,
energy_floor,
dither,
remove_dc_offset,
preemphasis_coefficient,
)
# size (m, padded_window_size // 2 + 1, 2)
fft = torch.fft.rfft(strided_input)
# Convert the FFT into a power spectrum
power_spectrum = torch.max(fft.abs().pow(2.0), epsilon).log() # size (m, padded_window_size // 2 + 1)
power_spectrum[:, 0] = signal_log_energy
power_spectrum = _subtract_column_mean(power_spectrum, subtract_mean)
return power_spectrum
def inverse_mel_scale_scalar(mel_freq: float) -> float:
return 700.0 * (math.exp(mel_freq / 1127.0) - 1.0)
def inverse_mel_scale(mel_freq: Tensor) -> Tensor:
return 700.0 * ((mel_freq / 1127.0).exp() - 1.0)
def mel_scale_scalar(freq: float) -> float:
return 1127.0 * math.log(1.0 + freq / 700.0)
def mel_scale(freq: Tensor) -> Tensor:
return 1127.0 * (1.0 + freq / 700.0).log()
def vtln_warp_freq(
vtln_low_cutoff: float,
vtln_high_cutoff: float,
low_freq: float,
high_freq: float,
vtln_warp_factor: float,
freq: Tensor,
) -> Tensor:
r"""This computes a VTLN warping function that is not the same as HTK's one,
but has similar inputs (this function has the advantage of never producing
empty bins).
This function computes a warp function F(freq), defined between low_freq
and high_freq inclusive, with the following properties:
F(low_freq) == low_freq
F(high_freq) == high_freq
The function is continuous and piecewise linear with two inflection
points.
The lower inflection point (measured in terms of the unwarped
frequency) is at frequency l, determined as described below.
The higher inflection point is at a frequency h, determined as
described below.
If l <= f <= h, then F(f) = f/vtln_warp_factor.
If the higher inflection point (measured in terms of the unwarped
frequency) is at h, then max(h, F(h)) == vtln_high_cutoff.
Since (by the last point) F(h) == h/vtln_warp_factor, then
max(h, h/vtln_warp_factor) == vtln_high_cutoff, so
h = vtln_high_cutoff / max(1, 1/vtln_warp_factor).
= vtln_high_cutoff * min(1, vtln_warp_factor).
If the lower inflection point (measured in terms of the unwarped
frequency) is at l, then min(l, F(l)) == vtln_low_cutoff
This implies that l = vtln_low_cutoff / min(1, 1/vtln_warp_factor)
= vtln_low_cutoff * max(1, vtln_warp_factor)
Args:
vtln_low_cutoff (float): Lower frequency cutoffs for VTLN
vtln_high_cutoff (float): Upper frequency cutoffs for VTLN
low_freq (float): Lower frequency cutoffs in mel computation
high_freq (float): Upper frequency cutoffs in mel computation
vtln_warp_factor (float): Vtln warp factor
freq (Tensor): given frequency in Hz
Returns:
Tensor: Freq after vtln warp
"""
assert vtln_low_cutoff > low_freq, "be sure to set the vtln_low option higher than low_freq"
assert vtln_high_cutoff < high_freq, "be sure to set the vtln_high option lower than high_freq [or negative]"
l = vtln_low_cutoff * max(1.0, vtln_warp_factor)
h = vtln_high_cutoff * min(1.0, vtln_warp_factor)
scale = 1.0 / vtln_warp_factor
Fl = scale * l # F(l)
Fh = scale * h # F(h)
assert l > low_freq and h < high_freq
# slope of left part of the 3-piece linear function
scale_left = (Fl - low_freq) / (l - low_freq)
# [slope of center part is just "scale"]
# slope of right part of the 3-piece linear function
scale_right = (high_freq - Fh) / (high_freq - h)
res = torch.empty_like(freq)
outside_low_high_freq = torch.lt(freq, low_freq) | torch.gt(freq, high_freq) # freq < low_freq || freq > high_freq
before_l = torch.lt(freq, l) # freq < l
before_h = torch.lt(freq, h) # freq < h
after_h = torch.ge(freq, h) # freq >= h
# order of operations matter here (since there is overlapping frequency regions)
res[after_h] = high_freq + scale_right * (freq[after_h] - high_freq)
res[before_h] = scale * freq[before_h]
res[before_l] = low_freq + scale_left * (freq[before_l] - low_freq)
res[outside_low_high_freq] = freq[outside_low_high_freq]
return res
def vtln_warp_mel_freq(
vtln_low_cutoff: float,
vtln_high_cutoff: float,
low_freq,
high_freq: float,
vtln_warp_factor: float,
mel_freq: Tensor,
) -> Tensor:
r"""
Args:
vtln_low_cutoff (float): Lower frequency cutoffs for VTLN
vtln_high_cutoff (float): Upper frequency cutoffs for VTLN
low_freq (float): Lower frequency cutoffs in mel computation
high_freq (float): Upper frequency cutoffs in mel computation
vtln_warp_factor (float): Vtln warp factor
mel_freq (Tensor): Given frequency in Mel
Returns:
Tensor: ``mel_freq`` after vtln warp
"""
return mel_scale(
vtln_warp_freq(
vtln_low_cutoff, vtln_high_cutoff, low_freq, high_freq, vtln_warp_factor, inverse_mel_scale(mel_freq)
)
)
def get_mel_banks(
num_bins: int,
window_length_padded: int,
sample_freq: float,
low_freq: float,
high_freq: float,
vtln_low: float,
vtln_high: float,
vtln_warp_factor: float,
) -> Tuple[Tensor, Tensor]:
"""
Returns:
(Tensor, Tensor): The tuple consists of ``bins`` (which is
melbank of size (``num_bins``, ``num_fft_bins``)) and ``center_freqs`` (which is
center frequencies of bins of size (``num_bins``)).
"""
assert num_bins > 3, "Must have at least 3 mel bins"
assert window_length_padded % 2 == 0
num_fft_bins = window_length_padded / 2
nyquist = 0.5 * sample_freq
if high_freq <= 0.0:
high_freq += nyquist
assert (
(0.0 <= low_freq < nyquist) and (0.0 < high_freq <= nyquist) and (low_freq < high_freq)
), "Bad values in options: low-freq {} and high-freq {} vs. nyquist {}".format(low_freq, high_freq, nyquist)
# fft-bin width [think of it as Nyquist-freq / half-window-length]
fft_bin_width = sample_freq / window_length_padded
mel_low_freq = mel_scale_scalar(low_freq)
mel_high_freq = mel_scale_scalar(high_freq)
# divide by num_bins+1 in next line because of end-effects where the bins
# spread out to the sides.
mel_freq_delta = (mel_high_freq - mel_low_freq) / (num_bins + 1)
if vtln_high < 0.0:
vtln_high += nyquist
assert vtln_warp_factor == 1.0 or (
(low_freq < vtln_low < high_freq) and (0.0 < vtln_high < high_freq) and (vtln_low < vtln_high)
), "Bad values in options: vtln-low {} and vtln-high {}, versus " "low-freq {} and high-freq {}".format(
vtln_low, vtln_high, low_freq, high_freq
)
bin = torch.arange(num_bins).unsqueeze(1)
left_mel = mel_low_freq + bin * mel_freq_delta # size(num_bins, 1)
center_mel = mel_low_freq + (bin + 1.0) * mel_freq_delta # size(num_bins, 1)
right_mel = mel_low_freq + (bin + 2.0) * mel_freq_delta # size(num_bins, 1)
if vtln_warp_factor != 1.0:
left_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, left_mel)
center_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, center_mel)
right_mel = vtln_warp_mel_freq(vtln_low, vtln_high, low_freq, high_freq, vtln_warp_factor, right_mel)
center_freqs = inverse_mel_scale(center_mel) # size (num_bins)
# size(1, num_fft_bins)
mel = mel_scale(fft_bin_width * torch.arange(num_fft_bins)).unsqueeze(0)
# size (num_bins, num_fft_bins)
up_slope = (mel - left_mel) / (center_mel - left_mel)
down_slope = (right_mel - mel) / (right_mel - center_mel)
if vtln_warp_factor == 1.0:
# left_mel < center_mel < right_mel so we can min the two slopes and clamp negative values
bins = torch.max(torch.zeros(1), torch.min(up_slope, down_slope))
else:
# warping can move the order of left_mel, center_mel, right_mel anywhere
bins = torch.zeros_like(up_slope)
up_idx = torch.gt(mel, left_mel) & torch.le(mel, center_mel) # left_mel < mel <= center_mel
down_idx = torch.gt(mel, center_mel) & torch.lt(mel, right_mel) # center_mel < mel < right_mel
bins[up_idx] = up_slope[up_idx]
bins[down_idx] = down_slope[down_idx]
return bins, center_freqs
def fbank(
waveform: Tensor,
blackman_coeff: float = 0.42,
channel: int = -1,
dither: float = 0.0,
energy_floor: float = 1.0,
frame_length: float = 25.0,
frame_shift: float = 10.0,
high_freq: float = 0.0,
htk_compat: bool = False,
low_freq: float = 20.0,
min_duration: float = 0.0,
num_mel_bins: int = 23,
preemphasis_coefficient: float = 0.97,
raw_energy: bool = True,
remove_dc_offset: bool = True,
round_to_power_of_two: bool = True,
sample_frequency: float = 16000.0,
snip_edges: bool = True,
subtract_mean: bool = False,
use_energy: bool = False,
use_log_fbank: bool = True,
use_power: bool = True,
vtln_high: float = -500.0,
vtln_low: float = 100.0,
vtln_warp: float = 1.0,
window_type: str = POVEY,
) -> Tensor:
r"""Create a fbank from a raw audio signal. This matches the input/output of Kaldi's
compute-fbank-feats.
Args:
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist)
(Default: ``0.0``)
htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible features
(need to change other parameters). (Default: ``False``)
low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``)
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``)
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
to FFT. (Default: ``True``)
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
specified there) (Default: ``16000.0``)
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
in the file, and the number of frames depends on the frame_length. If False, the number of frames
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
it this way. (Default: ``False``)
use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``)
use_log_fbank (bool, optional):If true, produce log-filterbank, else produce linear. (Default: ``True``)
use_power (bool, optional): If true, use power, else use magnitude. (Default: ``True``)
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if
negative, offset from high-mel-freq (Default: ``-500.0``)
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``)
vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``)
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
(Default: ``'povey'``)
Returns:
Tensor: A fbank identical to what Kaldi would output. The shape is (m, ``num_mel_bins + use_energy``)
where m is calculated in _get_strided
"""
device, dtype = waveform.device, waveform.dtype
waveform, window_shift, window_size, padded_window_size = _get_waveform_and_window_properties(
waveform, channel, sample_frequency, frame_shift, frame_length, round_to_power_of_two, preemphasis_coefficient
)
if len(waveform) < min_duration * sample_frequency:
# signal is too short
return torch.empty(0, device=device, dtype=dtype)
# strided_input, size (m, padded_window_size) and signal_log_energy, size (m)
strided_input, signal_log_energy = _get_window(
waveform,
padded_window_size,
window_size,
window_shift,
window_type,
blackman_coeff,
snip_edges,
raw_energy,
energy_floor,
dither,
remove_dc_offset,
preemphasis_coefficient,
)
# size (m, padded_window_size // 2 + 1)
spectrum = torch.fft.rfft(strided_input).abs()
if use_power:
spectrum = spectrum.pow(2.0)
# size (num_mel_bins, padded_window_size // 2)
mel_energies, _ = get_mel_banks(
num_mel_bins, padded_window_size, sample_frequency, low_freq, high_freq, vtln_low, vtln_high, vtln_warp
)
mel_energies = mel_energies.to(device=device, dtype=dtype)
# pad right column with zeros and add dimension, size (num_mel_bins, padded_window_size // 2 + 1)
mel_energies = torch.nn.functional.pad(mel_energies, (0, 1), mode="constant", value=0)
# sum with mel fiterbanks over the power spectrum, size (m, num_mel_bins)
mel_energies = torch.mm(spectrum, mel_energies.T)
if use_log_fbank:
# avoid log of zero (which should be prevented anyway by dithering)
mel_energies = torch.max(mel_energies, _get_epsilon(device, dtype)).log()
# if use_energy then add it as the last column for htk_compat == true else first column
if use_energy:
signal_log_energy = signal_log_energy.unsqueeze(1) # size (m, 1)
# returns size (m, num_mel_bins + 1)
if htk_compat:
mel_energies = torch.cat((mel_energies, signal_log_energy), dim=1)
else:
mel_energies = torch.cat((signal_log_energy, mel_energies), dim=1)
mel_energies = _subtract_column_mean(mel_energies, subtract_mean)
return mel_energies
def _get_dct_matrix(num_ceps: int, num_mel_bins: int) -> Tensor:
# returns a dct matrix of size (num_mel_bins, num_ceps)
# size (num_mel_bins, num_mel_bins)
dct_matrix = torchaudio.functional.create_dct(num_mel_bins, num_mel_bins, "ortho")
# kaldi expects the first cepstral to be weighted sum of factor sqrt(1/num_mel_bins)
# this would be the first column in the dct_matrix for torchaudio as it expects a
# right multiply (which would be the first column of the kaldi's dct_matrix as kaldi
# expects a left multiply e.g. dct_matrix * vector).
dct_matrix[:, 0] = math.sqrt(1 / float(num_mel_bins))
dct_matrix = dct_matrix[:, :num_ceps]
return dct_matrix
def _get_lifter_coeffs(num_ceps: int, cepstral_lifter: float) -> Tensor:
# returns size (num_ceps)
# Compute liftering coefficients (scaling on cepstral coeffs)
# coeffs are numbered slightly differently from HTK: the zeroth index is C0, which is not affected.
i = torch.arange(num_ceps)
return 1.0 + 0.5 * cepstral_lifter * torch.sin(math.pi * i / cepstral_lifter)
def mfcc(
waveform: Tensor,
blackman_coeff: float = 0.42,
cepstral_lifter: float = 22.0,
channel: int = -1,
dither: float = 0.0,
energy_floor: float = 1.0,
frame_length: float = 25.0,
frame_shift: float = 10.0,
high_freq: float = 0.0,
htk_compat: bool = False,
low_freq: float = 20.0,
num_ceps: int = 13,
min_duration: float = 0.0,
num_mel_bins: int = 23,
preemphasis_coefficient: float = 0.97,
raw_energy: bool = True,
remove_dc_offset: bool = True,
round_to_power_of_two: bool = True,
sample_frequency: float = 16000.0,
snip_edges: bool = True,
subtract_mean: bool = False,
use_energy: bool = False,
vtln_high: float = -500.0,
vtln_low: float = 100.0,
vtln_warp: float = 1.0,
window_type: str = POVEY,
) -> Tensor:
r"""Create a mfcc from a raw audio signal. This matches the input/output of Kaldi's
compute-mfcc-feats.
Args:
waveform (Tensor): Tensor of audio of size (c, n) where c is in the range [0,2)
blackman_coeff (float, optional): Constant coefficient for generalized Blackman window. (Default: ``0.42``)
cepstral_lifter (float, optional): Constant that controls scaling of MFCCs (Default: ``22.0``)
channel (int, optional): Channel to extract (-1 -> expect mono, 0 -> left, 1 -> right) (Default: ``-1``)
dither (float, optional): Dithering constant (0.0 means no dither). If you turn this off, you should set
the energy_floor option, e.g. to 1.0 or 0.1 (Default: ``0.0``)
energy_floor (float, optional): Floor on energy (absolute, not relative) in Spectrogram computation. Caution:
this floor is applied to the zeroth component, representing the total signal energy. The floor on the
individual spectrogram elements is fixed at std::numeric_limits<float>::epsilon(). (Default: ``1.0``)
frame_length (float, optional): Frame length in milliseconds (Default: ``25.0``)
frame_shift (float, optional): Frame shift in milliseconds (Default: ``10.0``)
high_freq (float, optional): High cutoff frequency for mel bins (if <= 0, offset from Nyquist)
(Default: ``0.0``)
htk_compat (bool, optional): If true, put energy last. Warning: not sufficient to get HTK compatible
features (need to change other parameters). (Default: ``False``)
low_freq (float, optional): Low cutoff frequency for mel bins (Default: ``20.0``)
num_ceps (int, optional): Number of cepstra in MFCC computation (including C0) (Default: ``13``)
min_duration (float, optional): Minimum duration of segments to process (in seconds). (Default: ``0.0``)
num_mel_bins (int, optional): Number of triangular mel-frequency bins (Default: ``23``)
preemphasis_coefficient (float, optional): Coefficient for use in signal preemphasis (Default: ``0.97``)
raw_energy (bool, optional): If True, compute energy before preemphasis and windowing (Default: ``True``)
remove_dc_offset (bool, optional): Subtract mean from waveform on each frame (Default: ``True``)
round_to_power_of_two (bool, optional): If True, round window size to power of two by zero-padding input
to FFT. (Default: ``True``)
sample_frequency (float, optional): Waveform data sample frequency (must match the waveform file, if
specified there) (Default: ``16000.0``)
snip_edges (bool, optional): If True, end effects will be handled by outputting only frames that completely fit
in the file, and the number of frames depends on the frame_length. If False, the number of frames
depends only on the frame_shift, and we reflect the data at the ends. (Default: ``True``)
subtract_mean (bool, optional): Subtract mean of each feature file [CMS]; not recommended to do
it this way. (Default: ``False``)
use_energy (bool, optional): Add an extra dimension with energy to the FBANK output. (Default: ``False``)
vtln_high (float, optional): High inflection point in piecewise linear VTLN warping function (if
negative, offset from high-mel-freq (Default: ``-500.0``)
vtln_low (float, optional): Low inflection point in piecewise linear VTLN warping function (Default: ``100.0``)
vtln_warp (float, optional): Vtln warp factor (only applicable if vtln_map not specified) (Default: ``1.0``)
window_type (str, optional): Type of window ('hamming'|'hanning'|'povey'|'rectangular'|'blackman')
(Default: ``"povey"``)
Returns:
Tensor: A mfcc identical to what Kaldi would output. The shape is (m, ``num_ceps``)
where m is calculated in _get_strided
"""
assert num_ceps <= num_mel_bins, "num_ceps cannot be larger than num_mel_bins: %d vs %d" % (num_ceps, num_mel_bins)
device, dtype = waveform.device, waveform.dtype
# The mel_energies should not be squared (use_power=True), not have mean subtracted
# (subtract_mean=False), and use log (use_log_fbank=True).
# size (m, num_mel_bins + use_energy)
feature = fbank(
waveform=waveform,
blackman_coeff=blackman_coeff,
channel=channel,
dither=dither,
energy_floor=energy_floor,
frame_length=frame_length,
frame_shift=frame_shift,
high_freq=high_freq,
htk_compat=htk_compat,
low_freq=low_freq,
min_duration=min_duration,
num_mel_bins=num_mel_bins,
preemphasis_coefficient=preemphasis_coefficient,
raw_energy=raw_energy,
remove_dc_offset=remove_dc_offset,
round_to_power_of_two=round_to_power_of_two,
sample_frequency=sample_frequency,
snip_edges=snip_edges,
subtract_mean=False,
use_energy=use_energy,
use_log_fbank=True,
use_power=True,
vtln_high=vtln_high,
vtln_low=vtln_low,
vtln_warp=vtln_warp,
window_type=window_type,
)
if use_energy:
# size (m)
signal_log_energy = feature[:, num_mel_bins if htk_compat else 0]
# offset is 0 if htk_compat==True else 1
mel_offset = int(not htk_compat)
feature = feature[:, mel_offset : (num_mel_bins + mel_offset)]
# size (num_mel_bins, num_ceps)
dct_matrix = _get_dct_matrix(num_ceps, num_mel_bins).to(dtype=dtype, device=device)
# size (m, num_ceps)
feature = feature.matmul(dct_matrix)
if cepstral_lifter != 0.0:
# size (1, num_ceps)
lifter_coeffs = _get_lifter_coeffs(num_ceps, cepstral_lifter).unsqueeze(0)
feature *= lifter_coeffs.to(device=device, dtype=dtype)
# if use_energy then replace the last column for htk_compat == true else first column
if use_energy:
feature[:, 0] = signal_log_energy
if htk_compat:
energy = feature[:, 0].unsqueeze(1) # size (m, 1)
feature = feature[:, 1:] # size (m, num_ceps - 1)
if not use_energy:
# scale on C0 (actually removing a scale we previously added that's
# part of one common definition of the cosine transform.)
energy *= math.sqrt(2)
feature = torch.cat((feature, energy), dim=1)
feature = _subtract_column_mean(feature, subtract_mean)
return feature
|