# Copyright (c) ONNX Project Contributors # SPDX-License-Identifier: Apache-2.0 import numpy as np from onnx.reference.op_run import OpRun def construct_original_grid(data_size, align_corners): is_2d = len(data_size) == 2 size_zeros = np.zeros(data_size) original_grid = [np.ones(data_size)] for dim, dim_size in enumerate(data_size): if align_corners == 1: step = 2.0 / (dim_size - 1) start = -1 stop = 1 + 0.0001 a = np.arange(start, stop, step) else: step = 2.0 / dim_size start = -1 + step / 2 stop = 1 a = np.arange(start, stop, step) if dim == 0: if is_2d: y = np.reshape(a, (dim_size, 1)) + size_zeros original_grid = [y, *original_grid] else: z = np.reshape(a, (dim_size, 1, 1)) + size_zeros original_grid = [z, *original_grid] elif dim == 1: if is_2d: x = np.reshape(a, (1, dim_size)) + size_zeros original_grid = [x, *original_grid] else: y = np.reshape(a, (1, dim_size, 1)) + size_zeros original_grid = [y, *original_grid] else: x = np.reshape(a, (1, dim_size)) + size_zeros original_grid = [x, *original_grid] return np.stack(original_grid, axis=2 if is_2d else 3) def apply_affine_transform(theta_n, original_grid_homo): # theta_n: (N, 2, 3) for 2D, (N, 3, 4) for 3D # original_grid_homo: (H, W, 3) for 2D, (D, H, W, 4) for 3D assert ( theta_n.ndim == 3 ), "theta_n shall have shape of (N, 2, 3) for 2D, (N, 3, 4) for 3D" if original_grid_homo.ndim == 3: N, dim_2d, dim_homo = theta_n.shape assert dim_2d == 2 and dim_homo == 3 H, W, dim_homo = original_grid_homo.shape assert dim_homo == 3 # reshape to [H * W, dim_homo] and then transpose to [dim_homo, H * W] original_grid_transposed = np.transpose( np.reshape(original_grid_homo, (H * W, dim_homo)) ) grid_n = np.matmul( theta_n, original_grid_transposed ) # shape (N, dim_2d, H * W) # transpose to (N, H * W, dim_2d) and then reshape to (N, H, W, dim_2d) grid = np.reshape(np.transpose(grid_n, (0, 2, 1)), (N, H, W, dim_2d)) return grid.astype(np.float32) else: assert original_grid_homo.ndim == 4 N, dim_3d, dim_homo = theta_n.shape assert dim_3d == 3 and dim_homo == 4 D, H, W, dim_homo = original_grid_homo.shape assert dim_homo == 4 # reshape to [D * H * W, dim_homo] and then transpose to [dim_homo, D * H * W] original_grid_transposed = np.transpose( np.reshape(original_grid_homo, (D * H * W, dim_homo)) ) grid_n = np.matmul( theta_n, original_grid_transposed ) # shape (N, dim_3d, D * H * W) # transpose to (N, D * H * W, dim_3d) and then reshape to (N, D, H, W, dim_3d) grid = np.reshape(np.transpose(grid_n, (0, 2, 1)), (N, D, H, W, dim_3d)) return grid.astype(np.float32) class AffineGrid(OpRun): def _run(self, theta, size, align_corners=None): # type: ignore align_corners = align_corners or self.align_corners # type: ignore _, _, *data_size = size original_grid = construct_original_grid(data_size, align_corners) grid = apply_affine_transform(theta, original_grid) return (grid,)