# Copyright (c) ONNX Project Contributors # SPDX-License-Identifier: Apache-2.0 import csv import datetime import os from collections import OrderedDict, defaultdict from typing import IO, Any, Dict, List, Optional, Set from tabulate import tabulate import onnx from onnx import GraphProto, defs, helper _all_schemas = defs.get_all_schemas() class AttrCoverage: def __init__(self) -> None: self.name: Optional[str] = None self.values: Set[str] = set() def add(self, attr: onnx.AttributeProto) -> None: assert self.name in {None, attr.name} self.name = attr.name value = helper.get_attribute_value(attr) # Turn list into tuple so we can put it into set # As value can be string, don't blindly turn `collections.Iterable` # into tuple. if isinstance(value, list): value = tuple(value) self.values.add(str(value)) class NodeCoverage: def __init__(self) -> None: self.op_type: Optional[str] = None self.attr_coverages: Dict[str, AttrCoverage] = defaultdict(AttrCoverage) def add(self, node: onnx.NodeProto) -> None: assert self.op_type in [None, node.op_type] if self.op_type is None: self.op_type = node.op_type assert self.op_type is not None self.schema = defs.get_schema(self.op_type, domain=node.domain) for attr in node.attribute: self.attr_coverages[attr.name].add(attr) class ModelCoverage: def __init__(self) -> None: self.name: Optional[str] = None self.graph: Optional[GraphProto] = None self.node_coverages: Dict[str, NodeCoverage] = defaultdict(NodeCoverage) def add(self, model: onnx.ModelProto) -> None: assert self.name in [None, model.graph.name] if self.name is None: self.name = model.graph.name assert self.name is not None self.graph = model.graph for node in model.graph.node: self.node_coverages[node.op_type].add(node) class Coverage: def __init__(self) -> None: self.buckets: Dict[str, Dict[str, NodeCoverage]] = { "loaded": defaultdict(NodeCoverage), "passed": defaultdict(NodeCoverage), } self.models: Dict[str, Dict[str, ModelCoverage]] = { "loaded": defaultdict(ModelCoverage), "passed": defaultdict(ModelCoverage), } def add_node(self, node: onnx.NodeProto, bucket: str) -> None: self.buckets[bucket][node.op_type].add(node) def add_graph(self, graph: onnx.GraphProto, bucket: str) -> None: for node in graph.node: self.add_node(node, bucket) def add_model(self, model: onnx.ModelProto, bucket: str, is_model: bool) -> None: self.add_graph(model.graph, bucket) # Only add model if name does not start with test if is_model: self.models[bucket][model.graph.name].add(model) def add_proto(self, proto: onnx.ModelProto, bucket: str, is_model: bool) -> None: assert isinstance(proto, onnx.ModelProto) self.add_model(proto, bucket, is_model) def report_text(self, writer: IO[str]) -> None: writer.write("---------- onnx coverage: ----------\n") writer.write( f"Operators (passed/loaded/total): {len(self.buckets['passed'])}/{len(self.buckets['loaded'])}/{len(_all_schemas)}\n" ) writer.write("------------------------------------\n") rows = [] passed = [] all_ops: List[str] = [] experimental: List[str] = [] for op_cov in self.buckets["passed"].values(): covered_attrs = [ f"{attr_cov.name}: {len(attr_cov.values)}" for attr_cov in op_cov.attr_coverages.values() ] uncovered_attrs = [ f"{attr}: 0" for attr in op_cov.schema.attributes if attr not in op_cov.attr_coverages ] attrs = sorted(covered_attrs) + sorted(uncovered_attrs) if attrs: attrs_column = os.linesep.join(attrs) else: attrs_column = "No attributes" rows.append([op_cov.op_type, attrs_column]) passed.append(op_cov.op_type) writer.write( tabulate( rows, headers=["Operator", "Attributes\n(name: #values)"], tablefmt="plain", ) ) writer.write("\n") if os.environ.get("CSVDIR") is not None: self.report_csv(all_ops, passed, experimental) # This function writes the coverage report to a set of CSV files for # the Backend Scoreboard (onnx.ai/backend-scoreboard). To enable this # feature, set a CSVDIR environment variable locally with the directory # where you would like the files to be written, relative to the # directory from which you're running pytest. The format of the CSV # files is a column naming each op or model and columns for each # backend with indications of whether the tests passed or failed for # each row. def report_csv( self, all_ops: List[str], passed: List[Optional[str]], experimental: List[str] ) -> None: for schema in _all_schemas: if schema.domain in {"", "ai.onnx"}: all_ops.append(schema.name) if schema.support_level == defs.OpSchema.SupportType.EXPERIMENTAL: experimental.append(schema.name) all_ops.sort() nodes_path = os.path.join( str(os.environ.get("CSVDIR")), "nodes.csv" # type: ignore ) # type: ignore models_path = os.path.join( str(os.environ.get("CSVDIR")), "models.csv" # type: ignore ) # type: ignore existing_nodes: OrderedDict[str, Dict[str, str]] = OrderedDict() existing_models: OrderedDict[str, Dict[str, str]] = OrderedDict() frameworks: List[str] = [] if os.path.isfile(nodes_path): with open(nodes_path) as nodes_file: reader = csv.DictReader(nodes_file) assert reader.fieldnames frameworks = list(reader.fieldnames) for row in reader: op = row["Op"] del row["Op"] existing_nodes[str(op)] = row if os.path.isfile(models_path): with open(models_path) as models_file: reader = csv.DictReader(models_file) for row in reader: model = row["Model"] del row["Model"] existing_models[str(model)] = row backend = os.environ.get("BACKEND") other_frameworks = frameworks[1:] with open(nodes_path, "w") as nodes_file: if "Op" not in frameworks: frameworks.append("Op") if backend not in frameworks: frameworks.append(str(backend)) else: other_frameworks.remove(str(backend)) node_writer = csv.DictWriter(nodes_file, fieldnames=frameworks) node_writer.writeheader() for node in all_ops: node_name = node if node in experimental: node_name = node + " (Experimental)" if node_name not in existing_nodes: # Also add Skipped for other nodes existing_nodes[node_name] = OrderedDict() for other_framework in other_frameworks: existing_nodes[node_name][other_framework] = "Skipped!" if node in passed: existing_nodes[node_name][str(backend)] = "Passed!" else: existing_nodes[node_name][str(backend)] = "Failed!" summaries: Dict[Any, Any] = {} if "Summary" in existing_nodes: summaries = existing_nodes["Summary"] del existing_nodes["Summary"] summaries[str(backend)] = f"{len(passed)}/{len(all_ops)} node tests passed" summaries["Op"] = "Summary" for node in existing_nodes: existing_nodes[node]["Op"] = str(node) node_writer.writerow(existing_nodes[node]) node_writer.writerow(summaries) with open(models_path, "w") as models_file: frameworks[0] = "Model" model_writer = csv.DictWriter(models_file, fieldnames=frameworks) model_writer.writeheader() # Consider both buckets num_models = 0 for bucket in self.models: for model in self.models[bucket]: # type: ignore # Both analyze and run the model on the backend num_covered = 0 for node in self.models[bucket][model].node_coverages: if node in passed: num_covered += 1 # TODO: Identify if there are models that are being # skipped/not loaded, but that are in other frameworks msg = "Passed!" if bucket == "loaded": if model in self.models["passed"]: continue msg = "Failed!" num_models += 1 if model not in existing_models: # Also add Skipped for other models existing_models[model] = OrderedDict() for other_framework in other_frameworks: existing_models[model][other_framework] = "Skipped!" existing_models[model][str(backend)] = str( f"{num_covered}/{len(self.models[bucket][model].node_coverages)} nodes covered: {msg}" ) summaries.clear() if "Summary" in existing_models: summaries = existing_models["Summary"] del existing_models["Summary"] if str(backend) in summaries: del summaries[str(backend)] summaries[ str(backend) ] = f"{len(self.models['passed'])}/{num_models} model tests passed" summaries["Model"] = "Summary" for model in existing_models: # type: ignore existing_models[model]["Model"] = model model_writer.writerow(existing_models[model]) model_writer.writerow(summaries) with open( os.path.join(str(os.environ.get("CSVDIR")), "metadata.csv"), # type: ignore "w", ) as metadata_file: # type: ignore metadata_writer = csv.writer(metadata_file) metadata_writer.writerow( ["Latest Update", datetime.datetime.now().isoformat().replace("T", " ")] )