# Copyright (c) ONNX Project Contributors # # SPDX-License-Identifier: Apache-2.0 import numpy as np import onnx from onnx.backend.test.case.base import Base from onnx.backend.test.case.node import expect class Conv(Base): @staticmethod def export() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 5, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with padding node_with_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], # Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1 pads=[1, 1, 1, 1], ) y_with_padding = np.array( [ [ [ [12.0, 21.0, 27.0, 33.0, 24.0], # (1, 1, 5, 5) output tensor [33.0, 54.0, 63.0, 72.0, 51.0], [63.0, 99.0, 108.0, 117.0, 81.0], [93.0, 144.0, 153.0, 162.0, 111.0], [72.0, 111.0, 117.0, 123.0, 84.0], ] ] ] ).astype(np.float32) expect( node_with_padding, inputs=[x, W], outputs=[y_with_padding], name="test_basic_conv_with_padding", ) # Convolution without padding node_without_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], # Default values for other attributes: strides=[1, 1], dilations=[1, 1], groups=1 pads=[0, 0, 0, 0], ) y_without_padding = np.array( [ [ [ [54.0, 63.0, 72.0], # (1, 1, 3, 3) output tensor [99.0, 108.0, 117.0], [144.0, 153.0, 162.0], ] ] ] ).astype(np.float32) expect( node_without_padding, inputs=[x, W], outputs=[y_without_padding], name="test_basic_conv_without_padding", ) @staticmethod def export_conv_with_strides() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 7, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], [25.0, 26.0, 27.0, 28.0, 29.0], [30.0, 31.0, 32.0, 33.0, 34.0], ] ] ] ).astype(np.float32) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with strides=2 and padding node_with_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 ) y_with_padding = np.array( [ [ [ [12.0, 27.0, 24.0], # (1, 1, 4, 3) output tensor [63.0, 108.0, 81.0], [123.0, 198.0, 141.0], [112.0, 177.0, 124.0], ] ] ] ).astype(np.float32) expect( node_with_padding, inputs=[x, W], outputs=[y_with_padding], name="test_conv_with_strides_padding", ) # Convolution with strides=2 and no padding node_without_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 ) y_without_padding = np.array( [ [ [ [54.0, 72.0], # (1, 1, 3, 2) output tensor [144.0, 162.0], [234.0, 252.0], ] ] ] ).astype(np.float32) expect( node_without_padding, inputs=[x, W], outputs=[y_without_padding], name="test_conv_with_strides_no_padding", ) # Convolution with strides=2 and padding only along one dimension (the H dimension in NxCxHxW tensor) node_with_asymmetric_padding = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], kernel_shape=[3, 3], pads=[1, 0, 1, 0], strides=[ 2, 2, ], # Default values for other attributes: dilations=[1, 1], groups=1 ) y_with_asymmetric_padding = np.array( [ [ [ [21.0, 33.0], # (1, 1, 4, 2) output tensor [99.0, 117.0], [189.0, 207.0], [171.0, 183.0], ] ] ] ).astype(np.float32) expect( node_with_asymmetric_padding, inputs=[x, W], outputs=[y_with_asymmetric_padding], name="test_conv_with_strides_and_asymmetric_padding", ) @staticmethod def export_conv_with_autopad_same() -> None: x = np.array( [ [ [ [0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 5, 5) input tensor [5.0, 6.0, 7.0, 8.0, 9.0], [10.0, 11.0, 12.0, 13.0, 14.0], [15.0, 16.0, 17.0, 18.0, 19.0], [20.0, 21.0, 22.0, 23.0, 24.0], ] ] ] ).astype(np.float32) W = np.array( [ [ [ [1.0, 1.0, 1.0], # (1, 1, 3, 3) tensor for convolution weights [1.0, 1.0, 1.0], [1.0, 1.0, 1.0], ] ] ] ).astype(np.float32) # Convolution with auto_pad='SAME_LOWER' and strides=2 node = onnx.helper.make_node( "Conv", inputs=["x", "W"], outputs=["y"], auto_pad="SAME_LOWER", kernel_shape=[3, 3], strides=[2, 2], ) y = np.array( [[[[12.0, 27.0, 24.0], [63.0, 108.0, 81.0], [72.0, 117.0, 84.0]]]] ).astype(np.float32) expect(node, inputs=[x, W], outputs=[y], name="test_conv_with_autopad_same")