import re import sympy from sympy.external import import_module from sympy.parsing.latex.errors import LaTeXParsingError lark = import_module("lark") if lark: from lark import Transformer, Token # type: ignore else: class Transformer: # type: ignore def transform(self, *args): pass class Token: # type: ignore pass # noinspection PyPep8Naming,PyMethodMayBeStatic class TransformToSymPyExpr(Transformer): """Returns a SymPy expression that is generated by traversing the ``lark.Tree`` passed to the ``.transform()`` function. Notes ===== **This class is never supposed to be used directly.** In order to tweak the behavior of this class, it has to be subclassed and then after the required modifications are made, the name of the new class should be passed to the :py:class:`LarkLaTeXParser` class by using the ``transformer`` argument in the constructor. Parameters ========== visit_tokens : bool, optional For information about what this option does, see `here `_. Note that the option must be set to ``True`` for the default parser to work. """ SYMBOL = sympy.Symbol DIGIT = sympy.core.numbers.Integer def CMD_INFTY(self, tokens): return sympy.oo def GREEK_SYMBOL(self, tokens): # we omit the first character because it is a backslash. Also, if the variable name has "var" in it, # like "varphi" or "varepsilon", we remove that too variable_name = re.sub("var", "", tokens[1:]) return sympy.Symbol(variable_name) def BASIC_SUBSCRIPTED_SYMBOL(self, tokens): symbol, sub = tokens.value.split("_") if sub.startswith("{"): return sympy.Symbol("%s_{%s}" % (symbol, sub[1:-1])) else: return sympy.Symbol("%s_{%s}" % (symbol, sub)) def GREEK_SUBSCRIPTED_SYMBOL(self, tokens): greek_letter, sub = tokens.value.split("_") greek_letter = re.sub("var", "", greek_letter[1:]) if sub.startswith("{"): return sympy.Symbol("%s_{%s}" % (greek_letter, sub[1:-1])) else: return sympy.Symbol("%s_{%s}" % (greek_letter, sub)) def SYMBOL_WITH_GREEK_SUBSCRIPT(self, tokens): symbol, sub = tokens.value.split("_") if sub.startswith("{"): greek_letter = sub[2:-1] greek_letter = re.sub("var", "", greek_letter) return sympy.Symbol("%s_{%s}" % (symbol, greek_letter)) else: greek_letter = sub[1:] greek_letter = re.sub("var", "", greek_letter) return sympy.Symbol("%s_{%s}" % (symbol, greek_letter)) def multi_letter_symbol(self, tokens): return sympy.Symbol(tokens[2]) def number(self, tokens): if "." in tokens[0]: return sympy.core.numbers.Float(tokens[0]) else: return sympy.core.numbers.Integer(tokens[0]) def latex_string(self, tokens): return tokens[0] def group_round_parentheses(self, tokens): return tokens[1] def group_square_brackets(self, tokens): return tokens[1] def group_curly_parentheses(self, tokens): return tokens[1] def eq(self, tokens): return sympy.Eq(tokens[0], tokens[2]) def ne(self, tokens): return sympy.Ne(tokens[0], tokens[2]) def lt(self, tokens): return sympy.Lt(tokens[0], tokens[2]) def lte(self, tokens): return sympy.Le(tokens[0], tokens[2]) def gt(self, tokens): return sympy.Gt(tokens[0], tokens[2]) def gte(self, tokens): return sympy.Ge(tokens[0], tokens[2]) def add(self, tokens): return sympy.Add(tokens[0], tokens[2]) def sub(self, tokens): if len(tokens) == 2: return -tokens[1] elif len(tokens) == 3: return sympy.Add(tokens[0], -tokens[2]) def mul(self, tokens): return sympy.Mul(tokens[0], tokens[2]) def div(self, tokens): return sympy.Mul(tokens[0], sympy.Pow(tokens[2], -1)) def adjacent_expressions(self, tokens): # Most of the time, if two expressions are next to each other, it means implicit multiplication, # but not always from sympy.physics.quantum import Bra, Ket if isinstance(tokens[0], Ket) and isinstance(tokens[1], Bra): from sympy.physics.quantum import OuterProduct return OuterProduct(tokens[0], tokens[1]) elif tokens[0] == sympy.Symbol("d"): # If the leftmost token is a "d", then it is highly likely that this is a differential return tokens[0], tokens[1] elif isinstance(tokens[0], tuple): # then we have a derivative return sympy.Derivative(tokens[1], tokens[0][1]) else: return sympy.Mul(tokens[0], tokens[1]) def superscript(self, tokens): return sympy.Pow(tokens[0], tokens[2]) def fraction(self, tokens): numerator = tokens[1] if isinstance(tokens[2], tuple): # we only need the variable w.r.t. which we are differentiating _, variable = tokens[2] # we will pass this information upwards return "derivative", variable else: denominator = tokens[2] return sympy.Mul(numerator, sympy.Pow(denominator, -1)) def binomial(self, tokens): return sympy.binomial(tokens[1], tokens[2]) def normal_integral(self, tokens): underscore_index = None caret_index = None if "_" in tokens: # we need to know the index because the next item in the list is the # arguments for the lower bound of the integral underscore_index = tokens.index("_") if "^" in tokens: # we need to know the index because the next item in the list is the # arguments for the upper bound of the integral caret_index = tokens.index("^") lower_bound = tokens[underscore_index + 1] if underscore_index else None upper_bound = tokens[caret_index + 1] if caret_index else None differential_symbol = self._extract_differential_symbol(tokens) if differential_symbol is None: raise LaTeXParsingError("Differential symbol was not found in the expression." "Valid differential symbols are \"d\", \"\\text{d}, and \"\\mathrm{d}\".") # else we can assume that a differential symbol was found differential_variable_index = tokens.index(differential_symbol) + 1 differential_variable = tokens[differential_variable_index] # we can't simply do something like `if (lower_bound and not upper_bound) ...` because this would # evaluate to `True` if the `lower_bound` is 0 and upper bound is non-zero if lower_bound is not None and upper_bound is None: # then one was given and the other wasn't raise LaTeXParsingError("Lower bound for the integral was found, but upper bound was not found.") if upper_bound is not None and lower_bound is None: # then one was given and the other wasn't raise LaTeXParsingError("Upper bound for the integral was found, but lower bound was not found.") # check if any expression was given or not. If it wasn't, then set the integrand to 1. if underscore_index is not None and underscore_index == differential_variable_index - 3: # The Token at differential_variable_index - 2 should be the integrand. However, if going one more step # backwards after that gives us the underscore, then that means that there _was_ no integrand. # Example: \int^7_0 dx integrand = 1 elif caret_index is not None and caret_index == differential_variable_index - 3: # The Token at differential_variable_index - 2 should be the integrand. However, if going one more step # backwards after that gives us the caret, then that means that there _was_ no integrand. # Example: \int_0^7 dx integrand = 1 elif differential_variable_index == 2: # this means we have something like "\int dx", because the "\int" symbol will always be # at index 0 in `tokens` integrand = 1 else: # The Token at differential_variable_index - 1 is the differential symbol itself, so we need to go one # more step before that. integrand = tokens[differential_variable_index - 2] if lower_bound is not None: # then we have a definite integral # we can assume that either both the lower and upper bounds are given, or # neither of them are return sympy.Integral(integrand, (differential_variable, lower_bound, upper_bound)) else: # we have an indefinite integral return sympy.Integral(integrand, differential_variable) def group_curly_parentheses_int(self, tokens): # return signature is a tuple consisting of the expression in the numerator, along with the variable of # integration if len(tokens) == 3: return 1, tokens[1] elif len(tokens) == 4: return tokens[1], tokens[2] # there are no other possibilities def special_fraction(self, tokens): numerator, variable = tokens[1] denominator = tokens[2] # We pass the integrand, along with information about the variable of integration, upw return sympy.Mul(numerator, sympy.Pow(denominator, -1)), variable def integral_with_special_fraction(self, tokens): underscore_index = None caret_index = None if "_" in tokens: # we need to know the index because the next item in the list is the # arguments for the lower bound of the integral underscore_index = tokens.index("_") if "^" in tokens: # we need to know the index because the next item in the list is the # arguments for the upper bound of the integral caret_index = tokens.index("^") lower_bound = tokens[underscore_index + 1] if underscore_index else None upper_bound = tokens[caret_index + 1] if caret_index else None # we can't simply do something like `if (lower_bound and not upper_bound) ...` because this would # evaluate to `True` if the `lower_bound` is 0 and upper bound is non-zero if lower_bound is not None and upper_bound is None: # then one was given and the other wasn't raise LaTeXParsingError("Lower bound for the integral was found, but upper bound was not found.") if upper_bound is not None and lower_bound is None: # then one was given and the other wasn't raise LaTeXParsingError("Upper bound for the integral was found, but lower bound was not found.") integrand, differential_variable = tokens[-1] if lower_bound is not None: # then we have a definite integral # we can assume that either both the lower and upper bounds are given, or # neither of them are return sympy.Integral(integrand, (differential_variable, lower_bound, upper_bound)) else: # we have an indefinite integral return sympy.Integral(integrand, differential_variable) def group_curly_parentheses_special(self, tokens): underscore_index = tokens.index("_") caret_index = tokens.index("^") # given the type of expressions we are parsing, we can assume that the lower limit # will always use braces around its arguments. This is because we don't support # converting unconstrained sums into SymPy expressions. # first we isolate the bottom limit left_brace_index = tokens.index("{", underscore_index) right_brace_index = tokens.index("}", underscore_index) bottom_limit = tokens[left_brace_index + 1: right_brace_index] # next, we isolate the upper limit top_limit = tokens[caret_index + 1:] # the code below will be useful for supporting things like `\sum_{n = 0}^{n = 5} n^2` # if "{" in top_limit: # left_brace_index = tokens.index("{", caret_index) # if left_brace_index != -1: # # then there's a left brace in the string, and we need to find the closing right brace # right_brace_index = tokens.index("}", caret_index) # top_limit = tokens[left_brace_index + 1: right_brace_index] # print(f"top limit = {top_limit}") index_variable = bottom_limit[0] lower_limit = bottom_limit[-1] upper_limit = top_limit[0] # for now, the index will always be 0 # print(f"return value = ({index_variable}, {lower_limit}, {upper_limit})") return index_variable, lower_limit, upper_limit def summation(self, tokens): return sympy.Sum(tokens[2], tokens[1]) def product(self, tokens): return sympy.Product(tokens[2], tokens[1]) def limit_dir_expr(self, tokens): caret_index = tokens.index("^") if "{" in tokens: left_curly_brace_index = tokens.index("{", caret_index) direction = tokens[left_curly_brace_index + 1] else: direction = tokens[caret_index + 1] if direction == "+": return tokens[0], "+" elif direction == "-": return tokens[0], "-" else: return tokens[0], "+-" def group_curly_parentheses_lim(self, tokens): limit_variable = tokens[1] if isinstance(tokens[3], tuple): destination, direction = tokens[3] else: destination = tokens[3] direction = "+-" return limit_variable, destination, direction def limit(self, tokens): limit_variable, destination, direction = tokens[2] return sympy.Limit(tokens[-1], limit_variable, destination, direction) def differential(self, tokens): return tokens[1] def derivative(self, tokens): return sympy.Derivative(tokens[-1], tokens[5]) def list_of_expressions(self, tokens): if len(tokens) == 1: # we return it verbatim because the function_applied node expects # a list return tokens else: def remove_tokens(args): if isinstance(args, Token): if args.type != "COMMA": # An unexpected token was encountered raise LaTeXParsingError("A comma token was expected, but some other token was encountered.") return False return True return filter(remove_tokens, tokens) def function_applied(self, tokens): return sympy.Function(tokens[0])(*tokens[2]) def min(self, tokens): return sympy.Min(*tokens[2]) def max(self, tokens): return sympy.Max(*tokens[2]) def bra(self, tokens): from sympy.physics.quantum import Bra return Bra(tokens[1]) def ket(self, tokens): from sympy.physics.quantum import Ket return Ket(tokens[1]) def inner_product(self, tokens): from sympy.physics.quantum import Bra, Ket, InnerProduct return InnerProduct(Bra(tokens[1]), Ket(tokens[3])) def sin(self, tokens): return sympy.sin(tokens[1]) def cos(self, tokens): return sympy.cos(tokens[1]) def tan(self, tokens): return sympy.tan(tokens[1]) def csc(self, tokens): return sympy.csc(tokens[1]) def sec(self, tokens): return sympy.sec(tokens[1]) def cot(self, tokens): return sympy.cot(tokens[1]) def sin_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.asin(tokens[-1]) else: return sympy.Pow(sympy.sin(tokens[-1]), exponent) def cos_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.acos(tokens[-1]) else: return sympy.Pow(sympy.cos(tokens[-1]), exponent) def tan_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.atan(tokens[-1]) else: return sympy.Pow(sympy.tan(tokens[-1]), exponent) def csc_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.acsc(tokens[-1]) else: return sympy.Pow(sympy.csc(tokens[-1]), exponent) def sec_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.asec(tokens[-1]) else: return sympy.Pow(sympy.sec(tokens[-1]), exponent) def cot_power(self, tokens): exponent = tokens[2] if exponent == -1: return sympy.acot(tokens[-1]) else: return sympy.Pow(sympy.cot(tokens[-1]), exponent) def arcsin(self, tokens): return sympy.asin(tokens[1]) def arccos(self, tokens): return sympy.acos(tokens[1]) def arctan(self, tokens): return sympy.atan(tokens[1]) def arccsc(self, tokens): return sympy.acsc(tokens[1]) def arcsec(self, tokens): return sympy.asec(tokens[1]) def arccot(self, tokens): return sympy.acot(tokens[1]) def sinh(self, tokens): return sympy.sinh(tokens[1]) def cosh(self, tokens): return sympy.cosh(tokens[1]) def tanh(self, tokens): return sympy.tanh(tokens[1]) def asinh(self, tokens): return sympy.asinh(tokens[1]) def acosh(self, tokens): return sympy.acosh(tokens[1]) def atanh(self, tokens): return sympy.atanh(tokens[1]) def abs(self, tokens): return sympy.Abs(tokens[1]) def floor(self, tokens): return sympy.floor(tokens[1]) def ceil(self, tokens): return sympy.ceiling(tokens[1]) def factorial(self, tokens): return sympy.factorial(tokens[0]) def conjugate(self, tokens): return sympy.conjugate(tokens[1]) def square_root(self, tokens): if len(tokens) == 2: # then there was no square bracket argument return sympy.sqrt(tokens[1]) elif len(tokens) == 3: # then there _was_ a square bracket argument return sympy.root(tokens[2], tokens[1]) def exponential(self, tokens): return sympy.exp(tokens[1]) def log(self, tokens): if tokens[0].type == "FUNC_LG": # we don't need to check if there's an underscore or not because having one # in this case would be meaningless # TODO: ANTLR refers to ISO 80000-2:2019. should we keep base 10 or base 2? return sympy.log(tokens[1], 10) elif tokens[0].type == "FUNC_LN": return sympy.log(tokens[1]) elif tokens[0].type == "FUNC_LOG": # we check if a base was specified or not if "_" in tokens: # then a base was specified return sympy.log(tokens[3], tokens[2]) else: # a base was not specified return sympy.log(tokens[1]) def _extract_differential_symbol(self, s: str): differential_symbols = {"d", r"\text{d}", r"\mathrm{d}"} differential_symbol = next((symbol for symbol in differential_symbols if symbol in s), None) return differential_symbol