from sympy.core.symbol import symbols from sympy.core.function import Function from sympy.matrices.dense import Matrix from sympy.matrices.dense import zeros from sympy.simplify.simplify import simplify from sympy.codegen.matrix_nodes import MatrixSolve from sympy.utilities.lambdify import lambdify from sympy.printing.numpy import NumPyPrinter from sympy.testing.pytest import skip from sympy.external import import_module def test_matrix_solve_issue_24862(): A = Matrix(3, 3, symbols('a:9')) b = Matrix(3, 1, symbols('b:3')) hash(MatrixSolve(A, b)) def test_matrix_solve_derivative_exact(): q = symbols('q') a11, a12, a21, a22, b1, b2 = ( f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function)) A = Matrix([[a11, a12], [a21, a22]]) b = Matrix([b1, b2]) x_lu = A.LUsolve(b) dxdq_lu = A.LUsolve(b.diff(q) - A.diff(q) * A.LUsolve(b)) assert simplify(x_lu.diff(q) - dxdq_lu) == zeros(2, 1) # dxdq_ms is the MatrixSolve equivalent of dxdq_lu dxdq_ms = MatrixSolve(A, b.diff(q) - A.diff(q) * MatrixSolve(A, b)) assert MatrixSolve(A, b).diff(q) == dxdq_ms def test_matrix_solve_derivative_numpy(): np = import_module('numpy') if not np: skip("numpy not installed.") q = symbols('q') a11, a12, a21, a22, b1, b2 = ( f(q) for f in symbols('a11 a12 a21 a22 b1 b2', cls=Function)) A = Matrix([[a11, a12], [a21, a22]]) b = Matrix([b1, b2]) dx_lu = A.LUsolve(b).diff(q) subs = {a11.diff(q): 0.2, a12.diff(q): 0.3, a21.diff(q): 0.1, a22.diff(q): 0.5, b1.diff(q): 0.4, b2.diff(q): 0.9, a11: 1.3, a12: 0.5, a21: 1.2, a22: 4, b1: 6.2, b2: 3.5} p, p_vals = zip(*subs.items()) dx_sm = MatrixSolve(A, b).diff(q) np.testing.assert_allclose( lambdify(p, dx_sm, printer=NumPyPrinter)(*p_vals), lambdify(p, dx_lu, printer=NumPyPrinter)(*p_vals))