Spaces:
Paused
Paused
| #from ctx_base import StandardBaseContext | |
| from .libmp.backend import basestring, exec_ | |
| from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps, | |
| round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps, | |
| ComplexResult, to_pickable, from_pickable, normalize, | |
| from_int, from_float, from_npfloat, from_Decimal, from_str, to_int, to_float, to_str, | |
| from_rational, from_man_exp, | |
| fone, fzero, finf, fninf, fnan, | |
| mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, | |
| mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod, | |
| mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge, | |
| mpf_hash, mpf_rand, | |
| mpf_sum, | |
| bitcount, to_fixed, | |
| mpc_to_str, | |
| mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate, | |
| mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf, | |
| mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int, | |
| mpc_mpf_div, | |
| mpf_pow, | |
| mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10, | |
| mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin, | |
| mpf_glaisher, mpf_twinprime, mpf_mertens, | |
| int_types) | |
| from . import rational | |
| from . import function_docs | |
| new = object.__new__ | |
| class mpnumeric(object): | |
| """Base class for mpf and mpc.""" | |
| __slots__ = [] | |
| def __new__(cls, val): | |
| raise NotImplementedError | |
| class _mpf(mpnumeric): | |
| """ | |
| An mpf instance holds a real-valued floating-point number. mpf:s | |
| work analogously to Python floats, but support arbitrary-precision | |
| arithmetic. | |
| """ | |
| __slots__ = ['_mpf_'] | |
| def __new__(cls, val=fzero, **kwargs): | |
| """A new mpf can be created from a Python float, an int, a | |
| or a decimal string representing a number in floating-point | |
| format.""" | |
| prec, rounding = cls.context._prec_rounding | |
| if kwargs: | |
| prec = kwargs.get('prec', prec) | |
| if 'dps' in kwargs: | |
| prec = dps_to_prec(kwargs['dps']) | |
| rounding = kwargs.get('rounding', rounding) | |
| if type(val) is cls: | |
| sign, man, exp, bc = val._mpf_ | |
| if (not man) and exp: | |
| return val | |
| v = new(cls) | |
| v._mpf_ = normalize(sign, man, exp, bc, prec, rounding) | |
| return v | |
| elif type(val) is tuple: | |
| if len(val) == 2: | |
| v = new(cls) | |
| v._mpf_ = from_man_exp(val[0], val[1], prec, rounding) | |
| return v | |
| if len(val) == 4: | |
| if val not in (finf, fninf, fnan): | |
| sign, man, exp, bc = val | |
| val = normalize(sign, MPZ(man), exp, bc, prec, rounding) | |
| v = new(cls) | |
| v._mpf_ = val | |
| return v | |
| raise ValueError | |
| else: | |
| v = new(cls) | |
| v._mpf_ = mpf_pos(cls.mpf_convert_arg(val, prec, rounding), prec, rounding) | |
| return v | |
| def mpf_convert_arg(cls, x, prec, rounding): | |
| if isinstance(x, int_types): return from_int(x) | |
| if isinstance(x, float): return from_float(x) | |
| if isinstance(x, basestring): return from_str(x, prec, rounding) | |
| if isinstance(x, cls.context.constant): return x.func(prec, rounding) | |
| if hasattr(x, '_mpf_'): return x._mpf_ | |
| if hasattr(x, '_mpmath_'): | |
| t = cls.context.convert(x._mpmath_(prec, rounding)) | |
| if hasattr(t, '_mpf_'): | |
| return t._mpf_ | |
| if hasattr(x, '_mpi_'): | |
| a, b = x._mpi_ | |
| if a == b: | |
| return a | |
| raise ValueError("can only create mpf from zero-width interval") | |
| raise TypeError("cannot create mpf from " + repr(x)) | |
| def mpf_convert_rhs(cls, x): | |
| if isinstance(x, int_types): return from_int(x) | |
| if isinstance(x, float): return from_float(x) | |
| if isinstance(x, complex_types): return cls.context.mpc(x) | |
| if isinstance(x, rational.mpq): | |
| p, q = x._mpq_ | |
| return from_rational(p, q, cls.context.prec) | |
| if hasattr(x, '_mpf_'): return x._mpf_ | |
| if hasattr(x, '_mpmath_'): | |
| t = cls.context.convert(x._mpmath_(*cls.context._prec_rounding)) | |
| if hasattr(t, '_mpf_'): | |
| return t._mpf_ | |
| return t | |
| return NotImplemented | |
| def mpf_convert_lhs(cls, x): | |
| x = cls.mpf_convert_rhs(x) | |
| if type(x) is tuple: | |
| return cls.context.make_mpf(x) | |
| return x | |
| man_exp = property(lambda self: self._mpf_[1:3]) | |
| man = property(lambda self: self._mpf_[1]) | |
| exp = property(lambda self: self._mpf_[2]) | |
| bc = property(lambda self: self._mpf_[3]) | |
| real = property(lambda self: self) | |
| imag = property(lambda self: self.context.zero) | |
| conjugate = lambda self: self | |
| def __getstate__(self): return to_pickable(self._mpf_) | |
| def __setstate__(self, val): self._mpf_ = from_pickable(val) | |
| def __repr__(s): | |
| if s.context.pretty: | |
| return str(s) | |
| return "mpf('%s')" % to_str(s._mpf_, s.context._repr_digits) | |
| def __str__(s): return to_str(s._mpf_, s.context._str_digits) | |
| def __hash__(s): return mpf_hash(s._mpf_) | |
| def __int__(s): return int(to_int(s._mpf_)) | |
| def __long__(s): return long(to_int(s._mpf_)) | |
| def __float__(s): return to_float(s._mpf_, rnd=s.context._prec_rounding[1]) | |
| def __complex__(s): return complex(float(s)) | |
| def __nonzero__(s): return s._mpf_ != fzero | |
| __bool__ = __nonzero__ | |
| def __abs__(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpf_ = mpf_abs(s._mpf_, prec, rounding) | |
| return v | |
| def __pos__(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpf_ = mpf_pos(s._mpf_, prec, rounding) | |
| return v | |
| def __neg__(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpf_ = mpf_neg(s._mpf_, prec, rounding) | |
| return v | |
| def _cmp(s, t, func): | |
| if hasattr(t, '_mpf_'): | |
| t = t._mpf_ | |
| else: | |
| t = s.mpf_convert_rhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return func(s._mpf_, t) | |
| def __cmp__(s, t): return s._cmp(t, mpf_cmp) | |
| def __lt__(s, t): return s._cmp(t, mpf_lt) | |
| def __gt__(s, t): return s._cmp(t, mpf_gt) | |
| def __le__(s, t): return s._cmp(t, mpf_le) | |
| def __ge__(s, t): return s._cmp(t, mpf_ge) | |
| def __ne__(s, t): | |
| v = s.__eq__(t) | |
| if v is NotImplemented: | |
| return v | |
| return not v | |
| def __rsub__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if type(t) in int_types: | |
| v = new(cls) | |
| v._mpf_ = mpf_sub(from_int(t), s._mpf_, prec, rounding) | |
| return v | |
| t = s.mpf_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t - s | |
| def __rdiv__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if isinstance(t, int_types): | |
| v = new(cls) | |
| v._mpf_ = mpf_rdiv_int(t, s._mpf_, prec, rounding) | |
| return v | |
| t = s.mpf_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t / s | |
| def __rpow__(s, t): | |
| t = s.mpf_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t ** s | |
| def __rmod__(s, t): | |
| t = s.mpf_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t % s | |
| def sqrt(s): | |
| return s.context.sqrt(s) | |
| def ae(s, t, rel_eps=None, abs_eps=None): | |
| return s.context.almosteq(s, t, rel_eps, abs_eps) | |
| def to_fixed(self, prec): | |
| return to_fixed(self._mpf_, prec) | |
| def __round__(self, *args): | |
| return round(float(self), *args) | |
| mpf_binary_op = """ | |
| def %NAME%(self, other): | |
| mpf, new, (prec, rounding) = self._ctxdata | |
| sval = self._mpf_ | |
| if hasattr(other, '_mpf_'): | |
| tval = other._mpf_ | |
| %WITH_MPF% | |
| ttype = type(other) | |
| if ttype in int_types: | |
| %WITH_INT% | |
| elif ttype is float: | |
| tval = from_float(other) | |
| %WITH_MPF% | |
| elif hasattr(other, '_mpc_'): | |
| tval = other._mpc_ | |
| mpc = type(other) | |
| %WITH_MPC% | |
| elif ttype is complex: | |
| tval = from_float(other.real), from_float(other.imag) | |
| mpc = self.context.mpc | |
| %WITH_MPC% | |
| if isinstance(other, mpnumeric): | |
| return NotImplemented | |
| try: | |
| other = mpf.context.convert(other, strings=False) | |
| except TypeError: | |
| return NotImplemented | |
| return self.%NAME%(other) | |
| """ | |
| return_mpf = "; obj = new(mpf); obj._mpf_ = val; return obj" | |
| return_mpc = "; obj = new(mpc); obj._mpc_ = val; return obj" | |
| mpf_pow_same = """ | |
| try: | |
| val = mpf_pow(sval, tval, prec, rounding) %s | |
| except ComplexResult: | |
| if mpf.context.trap_complex: | |
| raise | |
| mpc = mpf.context.mpc | |
| val = mpc_pow((sval, fzero), (tval, fzero), prec, rounding) %s | |
| """ % (return_mpf, return_mpc) | |
| def binary_op(name, with_mpf='', with_int='', with_mpc=''): | |
| code = mpf_binary_op | |
| code = code.replace("%WITH_INT%", with_int) | |
| code = code.replace("%WITH_MPC%", with_mpc) | |
| code = code.replace("%WITH_MPF%", with_mpf) | |
| code = code.replace("%NAME%", name) | |
| np = {} | |
| exec_(code, globals(), np) | |
| return np[name] | |
| _mpf.__eq__ = binary_op('__eq__', | |
| 'return mpf_eq(sval, tval)', | |
| 'return mpf_eq(sval, from_int(other))', | |
| 'return (tval[1] == fzero) and mpf_eq(tval[0], sval)') | |
| _mpf.__add__ = binary_op('__add__', | |
| 'val = mpf_add(sval, tval, prec, rounding)' + return_mpf, | |
| 'val = mpf_add(sval, from_int(other), prec, rounding)' + return_mpf, | |
| 'val = mpc_add_mpf(tval, sval, prec, rounding)' + return_mpc) | |
| _mpf.__sub__ = binary_op('__sub__', | |
| 'val = mpf_sub(sval, tval, prec, rounding)' + return_mpf, | |
| 'val = mpf_sub(sval, from_int(other), prec, rounding)' + return_mpf, | |
| 'val = mpc_sub((sval, fzero), tval, prec, rounding)' + return_mpc) | |
| _mpf.__mul__ = binary_op('__mul__', | |
| 'val = mpf_mul(sval, tval, prec, rounding)' + return_mpf, | |
| 'val = mpf_mul_int(sval, other, prec, rounding)' + return_mpf, | |
| 'val = mpc_mul_mpf(tval, sval, prec, rounding)' + return_mpc) | |
| _mpf.__div__ = binary_op('__div__', | |
| 'val = mpf_div(sval, tval, prec, rounding)' + return_mpf, | |
| 'val = mpf_div(sval, from_int(other), prec, rounding)' + return_mpf, | |
| 'val = mpc_mpf_div(sval, tval, prec, rounding)' + return_mpc) | |
| _mpf.__mod__ = binary_op('__mod__', | |
| 'val = mpf_mod(sval, tval, prec, rounding)' + return_mpf, | |
| 'val = mpf_mod(sval, from_int(other), prec, rounding)' + return_mpf, | |
| 'raise NotImplementedError("complex modulo")') | |
| _mpf.__pow__ = binary_op('__pow__', | |
| mpf_pow_same, | |
| 'val = mpf_pow_int(sval, other, prec, rounding)' + return_mpf, | |
| 'val = mpc_pow((sval, fzero), tval, prec, rounding)' + return_mpc) | |
| _mpf.__radd__ = _mpf.__add__ | |
| _mpf.__rmul__ = _mpf.__mul__ | |
| _mpf.__truediv__ = _mpf.__div__ | |
| _mpf.__rtruediv__ = _mpf.__rdiv__ | |
| class _constant(_mpf): | |
| """Represents a mathematical constant with dynamic precision. | |
| When printed or used in an arithmetic operation, a constant | |
| is converted to a regular mpf at the working precision. A | |
| regular mpf can also be obtained using the operation +x.""" | |
| def __new__(cls, func, name, docname=''): | |
| a = object.__new__(cls) | |
| a.name = name | |
| a.func = func | |
| a.__doc__ = getattr(function_docs, docname, '') | |
| return a | |
| def __call__(self, prec=None, dps=None, rounding=None): | |
| prec2, rounding2 = self.context._prec_rounding | |
| if not prec: prec = prec2 | |
| if not rounding: rounding = rounding2 | |
| if dps: prec = dps_to_prec(dps) | |
| return self.context.make_mpf(self.func(prec, rounding)) | |
| def _mpf_(self): | |
| prec, rounding = self.context._prec_rounding | |
| return self.func(prec, rounding) | |
| def __repr__(self): | |
| return "<%s: %s~>" % (self.name, self.context.nstr(self(dps=15))) | |
| class _mpc(mpnumeric): | |
| """ | |
| An mpc represents a complex number using a pair of mpf:s (one | |
| for the real part and another for the imaginary part.) The mpc | |
| class behaves fairly similarly to Python's complex type. | |
| """ | |
| __slots__ = ['_mpc_'] | |
| def __new__(cls, real=0, imag=0): | |
| s = object.__new__(cls) | |
| if isinstance(real, complex_types): | |
| real, imag = real.real, real.imag | |
| elif hasattr(real, '_mpc_'): | |
| s._mpc_ = real._mpc_ | |
| return s | |
| real = cls.context.mpf(real) | |
| imag = cls.context.mpf(imag) | |
| s._mpc_ = (real._mpf_, imag._mpf_) | |
| return s | |
| real = property(lambda self: self.context.make_mpf(self._mpc_[0])) | |
| imag = property(lambda self: self.context.make_mpf(self._mpc_[1])) | |
| def __getstate__(self): | |
| return to_pickable(self._mpc_[0]), to_pickable(self._mpc_[1]) | |
| def __setstate__(self, val): | |
| self._mpc_ = from_pickable(val[0]), from_pickable(val[1]) | |
| def __repr__(s): | |
| if s.context.pretty: | |
| return str(s) | |
| r = repr(s.real)[4:-1] | |
| i = repr(s.imag)[4:-1] | |
| return "%s(real=%s, imag=%s)" % (type(s).__name__, r, i) | |
| def __str__(s): | |
| return "(%s)" % mpc_to_str(s._mpc_, s.context._str_digits) | |
| def __complex__(s): | |
| return mpc_to_complex(s._mpc_, rnd=s.context._prec_rounding[1]) | |
| def __pos__(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpc_ = mpc_pos(s._mpc_, prec, rounding) | |
| return v | |
| def __abs__(s): | |
| prec, rounding = s.context._prec_rounding | |
| v = new(s.context.mpf) | |
| v._mpf_ = mpc_abs(s._mpc_, prec, rounding) | |
| return v | |
| def __neg__(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpc_ = mpc_neg(s._mpc_, prec, rounding) | |
| return v | |
| def conjugate(s): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| v = new(cls) | |
| v._mpc_ = mpc_conjugate(s._mpc_, prec, rounding) | |
| return v | |
| def __nonzero__(s): | |
| return mpc_is_nonzero(s._mpc_) | |
| __bool__ = __nonzero__ | |
| def __hash__(s): | |
| return mpc_hash(s._mpc_) | |
| def mpc_convert_lhs(cls, x): | |
| try: | |
| y = cls.context.convert(x) | |
| return y | |
| except TypeError: | |
| return NotImplemented | |
| def __eq__(s, t): | |
| if not hasattr(t, '_mpc_'): | |
| if isinstance(t, str): | |
| return False | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return s.real == t.real and s.imag == t.imag | |
| def __ne__(s, t): | |
| b = s.__eq__(t) | |
| if b is NotImplemented: | |
| return b | |
| return not b | |
| def _compare(*args): | |
| raise TypeError("no ordering relation is defined for complex numbers") | |
| __gt__ = _compare | |
| __le__ = _compare | |
| __gt__ = _compare | |
| __ge__ = _compare | |
| def __add__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if not hasattr(t, '_mpc_'): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| if hasattr(t, '_mpf_'): | |
| v = new(cls) | |
| v._mpc_ = mpc_add_mpf(s._mpc_, t._mpf_, prec, rounding) | |
| return v | |
| v = new(cls) | |
| v._mpc_ = mpc_add(s._mpc_, t._mpc_, prec, rounding) | |
| return v | |
| def __sub__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if not hasattr(t, '_mpc_'): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| if hasattr(t, '_mpf_'): | |
| v = new(cls) | |
| v._mpc_ = mpc_sub_mpf(s._mpc_, t._mpf_, prec, rounding) | |
| return v | |
| v = new(cls) | |
| v._mpc_ = mpc_sub(s._mpc_, t._mpc_, prec, rounding) | |
| return v | |
| def __mul__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if not hasattr(t, '_mpc_'): | |
| if isinstance(t, int_types): | |
| v = new(cls) | |
| v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding) | |
| return v | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| if hasattr(t, '_mpf_'): | |
| v = new(cls) | |
| v._mpc_ = mpc_mul_mpf(s._mpc_, t._mpf_, prec, rounding) | |
| return v | |
| t = s.mpc_convert_lhs(t) | |
| v = new(cls) | |
| v._mpc_ = mpc_mul(s._mpc_, t._mpc_, prec, rounding) | |
| return v | |
| def __div__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if not hasattr(t, '_mpc_'): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| if hasattr(t, '_mpf_'): | |
| v = new(cls) | |
| v._mpc_ = mpc_div_mpf(s._mpc_, t._mpf_, prec, rounding) | |
| return v | |
| v = new(cls) | |
| v._mpc_ = mpc_div(s._mpc_, t._mpc_, prec, rounding) | |
| return v | |
| def __pow__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if isinstance(t, int_types): | |
| v = new(cls) | |
| v._mpc_ = mpc_pow_int(s._mpc_, t, prec, rounding) | |
| return v | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| v = new(cls) | |
| if hasattr(t, '_mpf_'): | |
| v._mpc_ = mpc_pow_mpf(s._mpc_, t._mpf_, prec, rounding) | |
| else: | |
| v._mpc_ = mpc_pow(s._mpc_, t._mpc_, prec, rounding) | |
| return v | |
| __radd__ = __add__ | |
| def __rsub__(s, t): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t - s | |
| def __rmul__(s, t): | |
| cls, new, (prec, rounding) = s._ctxdata | |
| if isinstance(t, int_types): | |
| v = new(cls) | |
| v._mpc_ = mpc_mul_int(s._mpc_, t, prec, rounding) | |
| return v | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t * s | |
| def __rdiv__(s, t): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t / s | |
| def __rpow__(s, t): | |
| t = s.mpc_convert_lhs(t) | |
| if t is NotImplemented: | |
| return t | |
| return t ** s | |
| __truediv__ = __div__ | |
| __rtruediv__ = __rdiv__ | |
| def ae(s, t, rel_eps=None, abs_eps=None): | |
| return s.context.almosteq(s, t, rel_eps, abs_eps) | |
| complex_types = (complex, _mpc) | |
| class PythonMPContext(object): | |
| def __init__(ctx): | |
| ctx._prec_rounding = [53, round_nearest] | |
| ctx.mpf = type('mpf', (_mpf,), {}) | |
| ctx.mpc = type('mpc', (_mpc,), {}) | |
| ctx.mpf._ctxdata = [ctx.mpf, new, ctx._prec_rounding] | |
| ctx.mpc._ctxdata = [ctx.mpc, new, ctx._prec_rounding] | |
| ctx.mpf.context = ctx | |
| ctx.mpc.context = ctx | |
| ctx.constant = type('constant', (_constant,), {}) | |
| ctx.constant._ctxdata = [ctx.mpf, new, ctx._prec_rounding] | |
| ctx.constant.context = ctx | |
| def make_mpf(ctx, v): | |
| a = new(ctx.mpf) | |
| a._mpf_ = v | |
| return a | |
| def make_mpc(ctx, v): | |
| a = new(ctx.mpc) | |
| a._mpc_ = v | |
| return a | |
| def default(ctx): | |
| ctx._prec = ctx._prec_rounding[0] = 53 | |
| ctx._dps = 15 | |
| ctx.trap_complex = False | |
| def _set_prec(ctx, n): | |
| ctx._prec = ctx._prec_rounding[0] = max(1, int(n)) | |
| ctx._dps = prec_to_dps(n) | |
| def _set_dps(ctx, n): | |
| ctx._prec = ctx._prec_rounding[0] = dps_to_prec(n) | |
| ctx._dps = max(1, int(n)) | |
| prec = property(lambda ctx: ctx._prec, _set_prec) | |
| dps = property(lambda ctx: ctx._dps, _set_dps) | |
| def convert(ctx, x, strings=True): | |
| """ | |
| Converts *x* to an ``mpf`` or ``mpc``. If *x* is of type ``mpf``, | |
| ``mpc``, ``int``, ``float``, ``complex``, the conversion | |
| will be performed losslessly. | |
| If *x* is a string, the result will be rounded to the present | |
| working precision. Strings representing fractions or complex | |
| numbers are permitted. | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> mpmathify(3.5) | |
| mpf('3.5') | |
| >>> mpmathify('2.1') | |
| mpf('2.1000000000000001') | |
| >>> mpmathify('3/4') | |
| mpf('0.75') | |
| >>> mpmathify('2+3j') | |
| mpc(real='2.0', imag='3.0') | |
| """ | |
| if type(x) in ctx.types: return x | |
| if isinstance(x, int_types): return ctx.make_mpf(from_int(x)) | |
| if isinstance(x, float): return ctx.make_mpf(from_float(x)) | |
| if isinstance(x, complex): | |
| return ctx.make_mpc((from_float(x.real), from_float(x.imag))) | |
| if type(x).__module__ == 'numpy': return ctx.npconvert(x) | |
| if isinstance(x, numbers.Rational): # e.g. Fraction | |
| try: x = rational.mpq(int(x.numerator), int(x.denominator)) | |
| except: pass | |
| prec, rounding = ctx._prec_rounding | |
| if isinstance(x, rational.mpq): | |
| p, q = x._mpq_ | |
| return ctx.make_mpf(from_rational(p, q, prec)) | |
| if strings and isinstance(x, basestring): | |
| try: | |
| _mpf_ = from_str(x, prec, rounding) | |
| return ctx.make_mpf(_mpf_) | |
| except ValueError: | |
| pass | |
| if hasattr(x, '_mpf_'): return ctx.make_mpf(x._mpf_) | |
| if hasattr(x, '_mpc_'): return ctx.make_mpc(x._mpc_) | |
| if hasattr(x, '_mpmath_'): | |
| return ctx.convert(x._mpmath_(prec, rounding)) | |
| if type(x).__module__ == 'decimal': | |
| try: return ctx.make_mpf(from_Decimal(x, prec, rounding)) | |
| except: pass | |
| return ctx._convert_fallback(x, strings) | |
| def npconvert(ctx, x): | |
| """ | |
| Converts *x* to an ``mpf`` or ``mpc``. *x* should be a numpy | |
| scalar. | |
| """ | |
| import numpy as np | |
| if isinstance(x, np.integer): return ctx.make_mpf(from_int(int(x))) | |
| if isinstance(x, np.floating): return ctx.make_mpf(from_npfloat(x)) | |
| if isinstance(x, np.complexfloating): | |
| return ctx.make_mpc((from_npfloat(x.real), from_npfloat(x.imag))) | |
| raise TypeError("cannot create mpf from " + repr(x)) | |
| def isnan(ctx, x): | |
| """ | |
| Return *True* if *x* is a NaN (not-a-number), or for a complex | |
| number, whether either the real or complex part is NaN; | |
| otherwise return *False*:: | |
| >>> from mpmath import * | |
| >>> isnan(3.14) | |
| False | |
| >>> isnan(nan) | |
| True | |
| >>> isnan(mpc(3.14,2.72)) | |
| False | |
| >>> isnan(mpc(3.14,nan)) | |
| True | |
| """ | |
| if hasattr(x, "_mpf_"): | |
| return x._mpf_ == fnan | |
| if hasattr(x, "_mpc_"): | |
| return fnan in x._mpc_ | |
| if isinstance(x, int_types) or isinstance(x, rational.mpq): | |
| return False | |
| x = ctx.convert(x) | |
| if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): | |
| return ctx.isnan(x) | |
| raise TypeError("isnan() needs a number as input") | |
| def isinf(ctx, x): | |
| """ | |
| Return *True* if the absolute value of *x* is infinite; | |
| otherwise return *False*:: | |
| >>> from mpmath import * | |
| >>> isinf(inf) | |
| True | |
| >>> isinf(-inf) | |
| True | |
| >>> isinf(3) | |
| False | |
| >>> isinf(3+4j) | |
| False | |
| >>> isinf(mpc(3,inf)) | |
| True | |
| >>> isinf(mpc(inf,3)) | |
| True | |
| """ | |
| if hasattr(x, "_mpf_"): | |
| return x._mpf_ in (finf, fninf) | |
| if hasattr(x, "_mpc_"): | |
| re, im = x._mpc_ | |
| return re in (finf, fninf) or im in (finf, fninf) | |
| if isinstance(x, int_types) or isinstance(x, rational.mpq): | |
| return False | |
| x = ctx.convert(x) | |
| if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): | |
| return ctx.isinf(x) | |
| raise TypeError("isinf() needs a number as input") | |
| def isnormal(ctx, x): | |
| """ | |
| Determine whether *x* is "normal" in the sense of floating-point | |
| representation; that is, return *False* if *x* is zero, an | |
| infinity or NaN; otherwise return *True*. By extension, a | |
| complex number *x* is considered "normal" if its magnitude is | |
| normal:: | |
| >>> from mpmath import * | |
| >>> isnormal(3) | |
| True | |
| >>> isnormal(0) | |
| False | |
| >>> isnormal(inf); isnormal(-inf); isnormal(nan) | |
| False | |
| False | |
| False | |
| >>> isnormal(0+0j) | |
| False | |
| >>> isnormal(0+3j) | |
| True | |
| >>> isnormal(mpc(2,nan)) | |
| False | |
| """ | |
| if hasattr(x, "_mpf_"): | |
| return bool(x._mpf_[1]) | |
| if hasattr(x, "_mpc_"): | |
| re, im = x._mpc_ | |
| re_normal = bool(re[1]) | |
| im_normal = bool(im[1]) | |
| if re == fzero: return im_normal | |
| if im == fzero: return re_normal | |
| return re_normal and im_normal | |
| if isinstance(x, int_types) or isinstance(x, rational.mpq): | |
| return bool(x) | |
| x = ctx.convert(x) | |
| if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): | |
| return ctx.isnormal(x) | |
| raise TypeError("isnormal() needs a number as input") | |
| def isint(ctx, x, gaussian=False): | |
| """ | |
| Return *True* if *x* is integer-valued; otherwise return | |
| *False*:: | |
| >>> from mpmath import * | |
| >>> isint(3) | |
| True | |
| >>> isint(mpf(3)) | |
| True | |
| >>> isint(3.2) | |
| False | |
| >>> isint(inf) | |
| False | |
| Optionally, Gaussian integers can be checked for:: | |
| >>> isint(3+0j) | |
| True | |
| >>> isint(3+2j) | |
| False | |
| >>> isint(3+2j, gaussian=True) | |
| True | |
| """ | |
| if isinstance(x, int_types): | |
| return True | |
| if hasattr(x, "_mpf_"): | |
| sign, man, exp, bc = xval = x._mpf_ | |
| return bool((man and exp >= 0) or xval == fzero) | |
| if hasattr(x, "_mpc_"): | |
| re, im = x._mpc_ | |
| rsign, rman, rexp, rbc = re | |
| isign, iman, iexp, ibc = im | |
| re_isint = (rman and rexp >= 0) or re == fzero | |
| if gaussian: | |
| im_isint = (iman and iexp >= 0) or im == fzero | |
| return re_isint and im_isint | |
| return re_isint and im == fzero | |
| if isinstance(x, rational.mpq): | |
| p, q = x._mpq_ | |
| return p % q == 0 | |
| x = ctx.convert(x) | |
| if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'): | |
| return ctx.isint(x, gaussian) | |
| raise TypeError("isint() needs a number as input") | |
| def fsum(ctx, terms, absolute=False, squared=False): | |
| """ | |
| Calculates a sum containing a finite number of terms (for infinite | |
| series, see :func:`~mpmath.nsum`). The terms will be converted to | |
| mpmath numbers. For len(terms) > 2, this function is generally | |
| faster and produces more accurate results than the builtin | |
| Python function :func:`sum`. | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> fsum([1, 2, 0.5, 7]) | |
| mpf('10.5') | |
| With squared=True each term is squared, and with absolute=True | |
| the absolute value of each term is used. | |
| """ | |
| prec, rnd = ctx._prec_rounding | |
| real = [] | |
| imag = [] | |
| for term in terms: | |
| reval = imval = 0 | |
| if hasattr(term, "_mpf_"): | |
| reval = term._mpf_ | |
| elif hasattr(term, "_mpc_"): | |
| reval, imval = term._mpc_ | |
| else: | |
| term = ctx.convert(term) | |
| if hasattr(term, "_mpf_"): | |
| reval = term._mpf_ | |
| elif hasattr(term, "_mpc_"): | |
| reval, imval = term._mpc_ | |
| else: | |
| raise NotImplementedError | |
| if imval: | |
| if squared: | |
| if absolute: | |
| real.append(mpf_mul(reval,reval)) | |
| real.append(mpf_mul(imval,imval)) | |
| else: | |
| reval, imval = mpc_pow_int((reval,imval),2,prec+10) | |
| real.append(reval) | |
| imag.append(imval) | |
| elif absolute: | |
| real.append(mpc_abs((reval,imval), prec)) | |
| else: | |
| real.append(reval) | |
| imag.append(imval) | |
| else: | |
| if squared: | |
| reval = mpf_mul(reval, reval) | |
| elif absolute: | |
| reval = mpf_abs(reval) | |
| real.append(reval) | |
| s = mpf_sum(real, prec, rnd, absolute) | |
| if imag: | |
| s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd))) | |
| else: | |
| s = ctx.make_mpf(s) | |
| return s | |
| def fdot(ctx, A, B=None, conjugate=False): | |
| r""" | |
| Computes the dot product of the iterables `A` and `B`, | |
| .. math :: | |
| \sum_{k=0} A_k B_k. | |
| Alternatively, :func:`~mpmath.fdot` accepts a single iterable of pairs. | |
| In other words, ``fdot(A,B)`` and ``fdot(zip(A,B))`` are equivalent. | |
| The elements are automatically converted to mpmath numbers. | |
| With ``conjugate=True``, the elements in the second vector | |
| will be conjugated: | |
| .. math :: | |
| \sum_{k=0} A_k \overline{B_k} | |
| **Examples** | |
| >>> from mpmath import * | |
| >>> mp.dps = 15; mp.pretty = False | |
| >>> A = [2, 1.5, 3] | |
| >>> B = [1, -1, 2] | |
| >>> fdot(A, B) | |
| mpf('6.5') | |
| >>> list(zip(A, B)) | |
| [(2, 1), (1.5, -1), (3, 2)] | |
| >>> fdot(_) | |
| mpf('6.5') | |
| >>> A = [2, 1.5, 3j] | |
| >>> B = [1+j, 3, -1-j] | |
| >>> fdot(A, B) | |
| mpc(real='9.5', imag='-1.0') | |
| >>> fdot(A, B, conjugate=True) | |
| mpc(real='3.5', imag='-5.0') | |
| """ | |
| if B is not None: | |
| A = zip(A, B) | |
| prec, rnd = ctx._prec_rounding | |
| real = [] | |
| imag = [] | |
| hasattr_ = hasattr | |
| types = (ctx.mpf, ctx.mpc) | |
| for a, b in A: | |
| if type(a) not in types: a = ctx.convert(a) | |
| if type(b) not in types: b = ctx.convert(b) | |
| a_real = hasattr_(a, "_mpf_") | |
| b_real = hasattr_(b, "_mpf_") | |
| if a_real and b_real: | |
| real.append(mpf_mul(a._mpf_, b._mpf_)) | |
| continue | |
| a_complex = hasattr_(a, "_mpc_") | |
| b_complex = hasattr_(b, "_mpc_") | |
| if a_real and b_complex: | |
| aval = a._mpf_ | |
| bre, bim = b._mpc_ | |
| if conjugate: | |
| bim = mpf_neg(bim) | |
| real.append(mpf_mul(aval, bre)) | |
| imag.append(mpf_mul(aval, bim)) | |
| elif b_real and a_complex: | |
| are, aim = a._mpc_ | |
| bval = b._mpf_ | |
| real.append(mpf_mul(are, bval)) | |
| imag.append(mpf_mul(aim, bval)) | |
| elif a_complex and b_complex: | |
| #re, im = mpc_mul(a._mpc_, b._mpc_, prec+20) | |
| are, aim = a._mpc_ | |
| bre, bim = b._mpc_ | |
| if conjugate: | |
| bim = mpf_neg(bim) | |
| real.append(mpf_mul(are, bre)) | |
| real.append(mpf_neg(mpf_mul(aim, bim))) | |
| imag.append(mpf_mul(are, bim)) | |
| imag.append(mpf_mul(aim, bre)) | |
| else: | |
| raise NotImplementedError | |
| s = mpf_sum(real, prec, rnd) | |
| if imag: | |
| s = ctx.make_mpc((s, mpf_sum(imag, prec, rnd))) | |
| else: | |
| s = ctx.make_mpf(s) | |
| return s | |
| def _wrap_libmp_function(ctx, mpf_f, mpc_f=None, mpi_f=None, doc="<no doc>"): | |
| """ | |
| Given a low-level mpf_ function, and optionally similar functions | |
| for mpc_ and mpi_, defines the function as a context method. | |
| It is assumed that the return type is the same as that of | |
| the input; the exception is that propagation from mpf to mpc is possible | |
| by raising ComplexResult. | |
| """ | |
| def f(x, **kwargs): | |
| if type(x) not in ctx.types: | |
| x = ctx.convert(x) | |
| prec, rounding = ctx._prec_rounding | |
| if kwargs: | |
| prec = kwargs.get('prec', prec) | |
| if 'dps' in kwargs: | |
| prec = dps_to_prec(kwargs['dps']) | |
| rounding = kwargs.get('rounding', rounding) | |
| if hasattr(x, '_mpf_'): | |
| try: | |
| return ctx.make_mpf(mpf_f(x._mpf_, prec, rounding)) | |
| except ComplexResult: | |
| # Handle propagation to complex | |
| if ctx.trap_complex: | |
| raise | |
| return ctx.make_mpc(mpc_f((x._mpf_, fzero), prec, rounding)) | |
| elif hasattr(x, '_mpc_'): | |
| return ctx.make_mpc(mpc_f(x._mpc_, prec, rounding)) | |
| raise NotImplementedError("%s of a %s" % (name, type(x))) | |
| name = mpf_f.__name__[4:] | |
| f.__doc__ = function_docs.__dict__.get(name, "Computes the %s of x" % doc) | |
| return f | |
| # Called by SpecialFunctions.__init__() | |
| def _wrap_specfun(cls, name, f, wrap): | |
| if wrap: | |
| def f_wrapped(ctx, *args, **kwargs): | |
| convert = ctx.convert | |
| args = [convert(a) for a in args] | |
| prec = ctx.prec | |
| try: | |
| ctx.prec += 10 | |
| retval = f(ctx, *args, **kwargs) | |
| finally: | |
| ctx.prec = prec | |
| return +retval | |
| else: | |
| f_wrapped = f | |
| f_wrapped.__doc__ = function_docs.__dict__.get(name, f.__doc__) | |
| setattr(cls, name, f_wrapped) | |
| def _convert_param(ctx, x): | |
| if hasattr(x, "_mpc_"): | |
| v, im = x._mpc_ | |
| if im != fzero: | |
| return x, 'C' | |
| elif hasattr(x, "_mpf_"): | |
| v = x._mpf_ | |
| else: | |
| if type(x) in int_types: | |
| return int(x), 'Z' | |
| p = None | |
| if isinstance(x, tuple): | |
| p, q = x | |
| elif hasattr(x, '_mpq_'): | |
| p, q = x._mpq_ | |
| elif isinstance(x, basestring) and '/' in x: | |
| p, q = x.split('/') | |
| p = int(p) | |
| q = int(q) | |
| if p is not None: | |
| if not p % q: | |
| return p // q, 'Z' | |
| return ctx.mpq(p,q), 'Q' | |
| x = ctx.convert(x) | |
| if hasattr(x, "_mpc_"): | |
| v, im = x._mpc_ | |
| if im != fzero: | |
| return x, 'C' | |
| elif hasattr(x, "_mpf_"): | |
| v = x._mpf_ | |
| else: | |
| return x, 'U' | |
| sign, man, exp, bc = v | |
| if man: | |
| if exp >= -4: | |
| if sign: | |
| man = -man | |
| if exp >= 0: | |
| return int(man) << exp, 'Z' | |
| if exp >= -4: | |
| p, q = int(man), (1<<(-exp)) | |
| return ctx.mpq(p,q), 'Q' | |
| x = ctx.make_mpf(v) | |
| return x, 'R' | |
| elif not exp: | |
| return 0, 'Z' | |
| else: | |
| return x, 'U' | |
| def _mpf_mag(ctx, x): | |
| sign, man, exp, bc = x | |
| if man: | |
| return exp+bc | |
| if x == fzero: | |
| return ctx.ninf | |
| if x == finf or x == fninf: | |
| return ctx.inf | |
| return ctx.nan | |
| def mag(ctx, x): | |
| """ | |
| Quick logarithmic magnitude estimate of a number. Returns an | |
| integer or infinity `m` such that `|x| <= 2^m`. It is not | |
| guaranteed that `m` is an optimal bound, but it will never | |
| be too large by more than 2 (and probably not more than 1). | |
| **Examples** | |
| >>> from mpmath import * | |
| >>> mp.pretty = True | |
| >>> mag(10), mag(10.0), mag(mpf(10)), int(ceil(log(10,2))) | |
| (4, 4, 4, 4) | |
| >>> mag(10j), mag(10+10j) | |
| (4, 5) | |
| >>> mag(0.01), int(ceil(log(0.01,2))) | |
| (-6, -6) | |
| >>> mag(0), mag(inf), mag(-inf), mag(nan) | |
| (-inf, +inf, +inf, nan) | |
| """ | |
| if hasattr(x, "_mpf_"): | |
| return ctx._mpf_mag(x._mpf_) | |
| elif hasattr(x, "_mpc_"): | |
| r, i = x._mpc_ | |
| if r == fzero: | |
| return ctx._mpf_mag(i) | |
| if i == fzero: | |
| return ctx._mpf_mag(r) | |
| return 1+max(ctx._mpf_mag(r), ctx._mpf_mag(i)) | |
| elif isinstance(x, int_types): | |
| if x: | |
| return bitcount(abs(x)) | |
| return ctx.ninf | |
| elif isinstance(x, rational.mpq): | |
| p, q = x._mpq_ | |
| if p: | |
| return 1 + bitcount(abs(p)) - bitcount(q) | |
| return ctx.ninf | |
| else: | |
| x = ctx.convert(x) | |
| if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"): | |
| return ctx.mag(x) | |
| else: | |
| raise TypeError("requires an mpf/mpc") | |
| # Register with "numbers" ABC | |
| # We do not subclass, hence we do not use the @abstractmethod checks. While | |
| # this is less invasive it may turn out that we do not actually support | |
| # parts of the expected interfaces. See | |
| # http://docs.python.org/2/library/numbers.html for list of abstract | |
| # methods. | |
| try: | |
| import numbers | |
| numbers.Complex.register(_mpc) | |
| numbers.Real.register(_mpf) | |
| except ImportError: | |
| pass | |