Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
from onnx.reference.op_run import OpRun | |
from onnx.reference.ops.op_conv import _conv_implementation | |
class ConvInteger(OpRun): | |
def _run( # type: ignore | |
self, | |
X, | |
W, | |
x_zero_point=None, | |
w_zero_point=None, | |
auto_pad=None, | |
dilations=None, | |
group=None, | |
kernel_shape=None, | |
pads=None, | |
strides=None, | |
): | |
if len(X.shape) < 3: | |
raise ValueError( | |
f"X must have at least 3 dimensions but its shape is {X.shape}." | |
) | |
auto_pad = auto_pad or self.auto_pad # type: ignore | |
dilations = dilations or self.dilations # type: ignore | |
group = group or self.group # type: ignore | |
kernel_shape = kernel_shape or self.kernel_shape # type: ignore | |
pads = pads or self.pads # type: ignore | |
strides = strides or self.strides # type: ignore | |
X = X.astype(np.int32) | |
if x_zero_point: | |
X -= x_zero_point | |
W = W.astype(np.int32) | |
if w_zero_point: | |
W -= w_zero_point | |
return ( | |
_conv_implementation( | |
X, W, None, auto_pad, dilations, group, kernel_shape, pads, strides | |
).astype(np.int32), | |
) | |