Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
from typing import Tuple | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
def einsum_reference_implementation( | |
Eqn: str, Operands: Tuple[np.ndarray, ...] | |
) -> np.ndarray: | |
Z = np.einsum(Eqn, *Operands) | |
return Z | |
class Einsum(Base): | |
def export_einsum_transpose() -> None: | |
Eqn = "ij->ji" | |
node = onnx.helper.make_node( | |
"Einsum", inputs=["x"], outputs=["y"], equation=Eqn | |
) | |
X = np.random.randn(3, 4) | |
Y = einsum_reference_implementation(Eqn, (X,)) | |
expect(node, inputs=[X], outputs=[Y], name="test_einsum_transpose") | |
def export_einsum_sum() -> None: | |
Eqn = "ij->i" | |
node = onnx.helper.make_node( | |
"Einsum", inputs=["x"], outputs=["y"], equation=Eqn | |
) | |
X = np.random.randn(3, 4) | |
Z = einsum_reference_implementation(Eqn, (X,)) | |
expect(node, inputs=[X], outputs=[Z], name="test_einsum_sum") | |
def export_einsum_batch_diagonal() -> None: | |
Eqn = "...ii ->...i" | |
node = onnx.helper.make_node( | |
"Einsum", inputs=["x"], outputs=["y"], equation=Eqn | |
) | |
X = np.random.randn(3, 5, 5) | |
Z = einsum_reference_implementation(Eqn, (X,)) | |
expect(node, inputs=[X], outputs=[Z], name="test_einsum_batch_diagonal") | |
def export_einsum_inner_prod() -> None: | |
Eqn = "i,i" | |
node = onnx.helper.make_node( | |
"Einsum", inputs=["x", "y"], outputs=["z"], equation=Eqn | |
) | |
X = np.random.randn(5) | |
Y = np.random.randn(5) | |
Z = einsum_reference_implementation(Eqn, (X, Y)) | |
expect(node, inputs=[X, Y], outputs=[Z], name="test_einsum_inner_prod") | |
def export_einsum_batch_matmul() -> None: | |
Eqn = "bij, bjk -> bik" | |
node = onnx.helper.make_node( | |
"Einsum", inputs=["x", "y"], outputs=["z"], equation=Eqn | |
) | |
X = np.random.randn(5, 2, 3) | |
Y = np.random.randn(5, 3, 4) | |
Z = einsum_reference_implementation(Eqn, (X, Y)) | |
expect(node, inputs=[X, Y], outputs=[Z], name="test_einsum_batch_matmul") | |