Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
class ConvTranspose(Base): | |
def export() -> None: | |
x = np.array( | |
[[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) | |
).astype(np.float32) | |
W = np.array( | |
[ | |
[ | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
] | |
] | |
).astype(np.float32) | |
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) | |
y = np.array( | |
[ | |
[ | |
[ | |
[0.0, 1.0, 3.0, 3.0, 2.0], # (1, 2, 5, 5) | |
[3.0, 8.0, 15.0, 12.0, 7.0], | |
[9.0, 21.0, 36.0, 27.0, 15.0], | |
[9.0, 20.0, 33.0, 24.0, 13.0], | |
[6.0, 13.0, 21.0, 15.0, 8.0], | |
], | |
[ | |
[0.0, 1.0, 3.0, 3.0, 2.0], | |
[3.0, 8.0, 15.0, 12.0, 7.0], | |
[9.0, 21.0, 36.0, 27.0, 15.0], | |
[9.0, 20.0, 33.0, 24.0, 13.0], | |
[6.0, 13.0, 21.0, 15.0, 8.0], | |
], | |
] | |
] | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose") | |
def export_convtranspose_1d() -> None: | |
x = np.array([[[0.0, 1.0, 2.0]]]).astype(np.float32) # (1, 1, 3) | |
W = np.array([[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]]).astype( # (1, 2, 3) | |
np.float32 | |
) | |
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) | |
y = np.array( | |
[[[0.0, 1.0, 3.0, 3.0, 2.0], [0.0, 1.0, 3.0, 3.0, 2.0]]] # (1, 2, 5) | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_1d") | |
def export_convtranspose_3d() -> None: | |
x = np.array( | |
[ | |
[ | |
[ | |
[ | |
[0.0, 1.0, 2.0, 3.0, 4.0], # (1, 1, 3, 4, 5) | |
[5.0, 6.0, 7.0, 8.0, 9.0], | |
[10.0, 11.0, 12.0, 13.0, 14.0], | |
[15.0, 16.0, 17.0, 18.0, 19.0], | |
], | |
[ | |
[20.0, 21.0, 22.0, 23.0, 24.0], | |
[25.0, 26.0, 27.0, 28.0, 29.0], | |
[30.0, 31.0, 32.0, 33.0, 34.0], | |
[35.0, 36.0, 37.0, 38.0, 39.0], | |
], | |
[ | |
[40.0, 41.0, 42.0, 43.0, 44.0], | |
[45.0, 46.0, 47.0, 48.0, 49.0], | |
[50.0, 51.0, 52.0, 53.0, 54.0], | |
[55.0, 56.0, 57.0, 58.0, 59.0], | |
], | |
] | |
] | |
] | |
).astype(np.float32) | |
W = np.array( | |
[ | |
[ | |
[ | |
[ | |
[1.0, 1.0, 1.0], # (1, 2, 3, 3, 3) | |
[1.0, 1.0, 1.0], | |
[1.0, 1.0, 1.0], | |
], | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
], | |
[ | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
], | |
] | |
] | |
).astype(np.float32) | |
node = onnx.helper.make_node("ConvTranspose", ["X", "W"], ["Y"]) | |
y = np.array( | |
[ | |
[ | |
[ | |
[ | |
[0.0, 1.0, 3.0, 6.0, 9.0, 7.0, 4.0], # (1, 2, 5, 6, 7) | |
[5.0, 12.0, 21.0, 27.0, 33.0, 24.0, 13.0], | |
[15.0, 33.0, 54.0, 63.0, 72.0, 51.0, 27.0], | |
[30.0, 63.0, 99.0, 108.0, 117.0, 81.0, 42.0], | |
[25.0, 52.0, 81.0, 87.0, 93.0, 64.0, 33.0], | |
[15.0, 31.0, 48.0, 51.0, 54.0, 37.0, 19.0], | |
], | |
[ | |
[20.0, 42.0, 66.0, 72.0, 78.0, 54.0, 28.0], | |
[50.0, 104.0, 162.0, 174.0, 186.0, 128.0, 66.0], | |
[90.0, 186.0, 288.0, 306.0, 324.0, 222.0, 114.0], | |
[120.0, 246.0, 378.0, 396.0, 414.0, 282.0, 144.0], | |
[90.0, 184.0, 282.0, 294.0, 306.0, 208.0, 106.0], | |
[50.0, 102.0, 156.0, 162.0, 168.0, 114.0, 58.0], | |
], | |
[ | |
[60.0, 123.0, 189.0, 198.0, 207.0, 141.0, 72.0], | |
[135.0, 276.0, 423.0, 441.0, 459.0, 312.0, 159.0], | |
[225.0, 459.0, 702.0, 729.0, 756.0, 513.0, 261.0], | |
[270.0, 549.0, 837.0, 864.0, 891.0, 603.0, 306.0], | |
[195.0, 396.0, 603.0, 621.0, 639.0, 432.0, 219.0], | |
[105.0, 213.0, 324.0, 333.0, 342.0, 231.0, 117.0], | |
], | |
[ | |
[60.0, 122.0, 186.0, 192.0, 198.0, 134.0, 68.0], | |
[130.0, 264.0, 402.0, 414.0, 426.0, 288.0, 146.0], | |
[210.0, 426.0, 648.0, 666.0, 684.0, 462.0, 234.0], | |
[240.0, 486.0, 738.0, 756.0, 774.0, 522.0, 264.0], | |
[170.0, 344.0, 522.0, 534.0, 546.0, 368.0, 186.0], | |
[90.0, 182.0, 276.0, 282.0, 288.0, 194.0, 98.0], | |
], | |
[ | |
[40.0, 81.0, 123.0, 126.0, 129.0, 87.0, 44.0], | |
[85.0, 172.0, 261.0, 267.0, 273.0, 184.0, 93.0], | |
[135.0, 273.0, 414.0, 423.0, 432.0, 291.0, 147.0], | |
[150.0, 303.0, 459.0, 468.0, 477.0, 321.0, 162.0], | |
[105.0, 212.0, 321.0, 327.0, 333.0, 224.0, 113.0], | |
[55.0, 111.0, 168.0, 171.0, 174.0, 117.0, 59.0], | |
], | |
], | |
[ | |
[ | |
[0.0, 1.0, 3.0, 6.0, 9.0, 7.0, 4.0], | |
[5.0, 12.0, 21.0, 27.0, 33.0, 24.0, 13.0], | |
[15.0, 33.0, 54.0, 63.0, 72.0, 51.0, 27.0], | |
[30.0, 63.0, 99.0, 108.0, 117.0, 81.0, 42.0], | |
[25.0, 52.0, 81.0, 87.0, 93.0, 64.0, 33.0], | |
[15.0, 31.0, 48.0, 51.0, 54.0, 37.0, 19.0], | |
], | |
[ | |
[20.0, 42.0, 66.0, 72.0, 78.0, 54.0, 28.0], | |
[50.0, 104.0, 162.0, 174.0, 186.0, 128.0, 66.0], | |
[90.0, 186.0, 288.0, 306.0, 324.0, 222.0, 114.0], | |
[120.0, 246.0, 378.0, 396.0, 414.0, 282.0, 144.0], | |
[90.0, 184.0, 282.0, 294.0, 306.0, 208.0, 106.0], | |
[50.0, 102.0, 156.0, 162.0, 168.0, 114.0, 58.0], | |
], | |
[ | |
[60.0, 123.0, 189.0, 198.0, 207.0, 141.0, 72.0], | |
[135.0, 276.0, 423.0, 441.0, 459.0, 312.0, 159.0], | |
[225.0, 459.0, 702.0, 729.0, 756.0, 513.0, 261.0], | |
[270.0, 549.0, 837.0, 864.0, 891.0, 603.0, 306.0], | |
[195.0, 396.0, 603.0, 621.0, 639.0, 432.0, 219.0], | |
[105.0, 213.0, 324.0, 333.0, 342.0, 231.0, 117.0], | |
], | |
[ | |
[60.0, 122.0, 186.0, 192.0, 198.0, 134.0, 68.0], | |
[130.0, 264.0, 402.0, 414.0, 426.0, 288.0, 146.0], | |
[210.0, 426.0, 648.0, 666.0, 684.0, 462.0, 234.0], | |
[240.0, 486.0, 738.0, 756.0, 774.0, 522.0, 264.0], | |
[170.0, 344.0, 522.0, 534.0, 546.0, 368.0, 186.0], | |
[90.0, 182.0, 276.0, 282.0, 288.0, 194.0, 98.0], | |
], | |
[ | |
[40.0, 81.0, 123.0, 126.0, 129.0, 87.0, 44.0], | |
[85.0, 172.0, 261.0, 267.0, 273.0, 184.0, 93.0], | |
[135.0, 273.0, 414.0, 423.0, 432.0, 291.0, 147.0], | |
[150.0, 303.0, 459.0, 468.0, 477.0, 321.0, 162.0], | |
[105.0, 212.0, 321.0, 327.0, 333.0, 224.0, 113.0], | |
[55.0, 111.0, 168.0, 171.0, 174.0, 117.0, 59.0], | |
], | |
], | |
] | |
] | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_3d") | |
def export_convtranspose_attributes() -> None: | |
x = np.array( | |
[[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) | |
).astype(np.float32) | |
W = np.array( | |
[ | |
[ | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
] | |
] | |
).astype(np.float32) | |
y = np.array( | |
[ | |
[ | |
[ | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], # (1, 2, 10, 8) | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], | |
], | |
[ | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0, 2.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0, 5.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0, 8.0, 0.0], | |
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], | |
], | |
] | |
] | |
).astype(np.float32) | |
node = onnx.helper.make_node( | |
"ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], output_shape=[10, 8] | |
) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_output_shape") | |
node = onnx.helper.make_node( | |
"ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], output_padding=[1, 1] | |
) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_pad") | |
node = onnx.helper.make_node( | |
"ConvTranspose", | |
["X", "W"], | |
["Y"], | |
name="test", | |
strides=[3, 2], | |
output_shape=[10, 8], | |
kernel_shape=[3, 3], | |
output_padding=[1, 1], | |
) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_kernel_shape") | |
def export_convtranspose_pads() -> None: | |
x = np.array( | |
[[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) | |
).astype(np.float32) | |
W = np.array( | |
[ | |
[ | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
] | |
] | |
).astype(np.float32) | |
node = onnx.helper.make_node( | |
"ConvTranspose", ["X", "W"], ["Y"], strides=[3, 2], pads=[1, 2, 1, 2] | |
) | |
y = np.array( | |
[ | |
[ | |
[ | |
[1.0, 1.0, 3.0], # (1, 2, 7, 3) | |
[1.0, 1.0, 3.0], | |
[7.0, 4.0, 9.0], | |
[7.0, 4.0, 9.0], | |
[7.0, 4.0, 9.0], | |
[13.0, 7.0, 15.0], | |
[13.0, 7.0, 15.0], | |
], | |
[ | |
[1.0, 1.0, 3.0], | |
[1.0, 1.0, 3.0], | |
[7.0, 4.0, 9.0], | |
[7.0, 4.0, 9.0], | |
[7.0, 4.0, 9.0], | |
[13.0, 7.0, 15.0], | |
[13.0, 7.0, 15.0], | |
], | |
] | |
] | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_pads") | |
def export_convtranspose_dilations() -> None: | |
x = np.array( | |
[[[[3.0, 8.0, 1.0], [9.0, 5.0, 7.0], [3.0, 2.0, 6.0]]]] # (1, 1, 3, 3) | |
).astype(np.float32) | |
W = np.array([[[[7.0, 2.0], [1.0, 9.0]]]]).astype(np.float32) # (1, 1, 2, 2) | |
node = onnx.helper.make_node( | |
"ConvTranspose", ["X", "W"], ["Y"], dilations=[2, 2] | |
) | |
y = np.array( | |
[ | |
[ | |
[ | |
[21.0, 56.0, 13.0, 16.0, 2.0], # [1, 1, 5, 5] | |
[63.0, 35.0, 67.0, 10.0, 14.0], | |
[24.0, 22.0, 76.0, 76.0, 21.0], | |
[9.0, 5.0, 88.0, 45.0, 63.0], | |
[3.0, 2.0, 33.0, 18.0, 54.0], | |
] | |
] | |
] | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_dilations") | |
def export_convtranspose_autopad_same() -> None: | |
x = np.array( | |
[[[[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]]]] # (1, 1, 3, 3) | |
).astype(np.float32) | |
W = np.array( | |
[ | |
[ | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], # (1, 2, 3, 3) | |
[[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]], | |
] | |
] | |
).astype(np.float32) | |
node = onnx.helper.make_node( | |
"ConvTranspose", ["X", "W"], ["Y"], auto_pad="SAME_UPPER", strides=[2, 2] | |
) | |
y = np.array( | |
[ | |
[ | |
[ | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0], | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0], | |
[3.0, 3.0, 8.0, 5.0, 12.0, 7.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0], | |
[9.0, 9.0, 20.0, 11.0, 24.0, 13.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0], | |
], | |
[ | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0], | |
[0.0, 0.0, 1.0, 1.0, 3.0, 2.0], | |
[3.0, 3.0, 8.0, 5.0, 12.0, 7.0], | |
[3.0, 3.0, 7.0, 4.0, 9.0, 5.0], | |
[9.0, 9.0, 20.0, 11.0, 24.0, 13.0], | |
[6.0, 6.0, 13.0, 7.0, 15.0, 8.0], | |
], | |
] | |
] | |
).astype(np.float32) | |
expect(node, inputs=[x, W], outputs=[y], name="test_convtranspose_autopad_same") | |