Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
6.31 kB
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
from onnx.reference.ops.op_affine_grid import (
apply_affine_transform,
construct_original_grid,
)
def create_affine_matrix_3d(
angle1,
angle2,
offset_x,
offset_y,
offset_z,
shear_x,
shear_y,
shear_z,
scale_x,
scale_y,
scale_z,
):
rot_x = np.stack(
[
np.ones_like(angle1),
np.zeros_like(angle1),
np.zeros_like(angle1),
np.zeros_like(angle1),
np.cos(angle1),
-np.sin(angle1),
np.zeros_like(angle1),
np.sin(angle1),
np.cos(angle1),
],
axis=-1,
).reshape(-1, 3, 3)
rot_y = np.stack(
[
np.cos(angle2),
np.zeros_like(angle2),
np.sin(angle2),
np.zeros_like(angle2),
np.ones_like(angle2),
np.zeros_like(angle2),
-np.sin(angle2),
np.zeros_like(angle2),
np.cos(angle2),
],
axis=-1,
).reshape(-1, 3, 3)
shear = np.stack(
[
np.ones_like(shear_x),
shear_x,
shear_y,
shear_z,
np.ones_like(shear_x),
shear_x,
shear_y,
shear_x,
np.ones_like(shear_x),
],
axis=-1,
).reshape(-1, 3, 3)
scale = np.stack(
[
scale_x,
np.zeros_like(scale_x),
np.zeros_like(scale_x),
np.zeros_like(scale_x),
scale_y,
np.zeros_like(scale_x),
np.zeros_like(scale_x),
np.zeros_like(scale_x),
scale_z,
],
axis=-1,
).reshape(-1, 3, 3)
translation = np.transpose(np.array([offset_x, offset_y, offset_z])).reshape(
-1, 1, 3
)
rotation_matrix = rot_y @ rot_x @ shear @ scale # (N, 3, 3)
rotation_matrix = np.transpose(rotation_matrix, (0, 2, 1))
affine_matrix = np.hstack((rotation_matrix, translation))
affine_matrix = np.transpose(affine_matrix, (0, 2, 1))
return affine_matrix.astype(np.float32)
def create_affine_matrix_2d(
angle1, offset_x, offset_y, shear_x, shear_y, scale_x, scale_y
):
rot = np.stack(
[np.cos(angle1), -np.sin(angle1), np.sin(angle1), np.cos(angle1)], axis=-1
).reshape(-1, 2, 2)
shear = np.stack(
[np.ones_like(shear_x), shear_x, shear_y, np.ones_like(shear_x)], axis=-1
).reshape(-1, 2, 2)
scale = np.stack(
[scale_x, np.zeros_like(scale_x), np.zeros_like(scale_x), scale_y], axis=-1
).reshape(-1, 2, 2)
translation = np.transpose(np.array([offset_x, offset_y])).reshape(-1, 1, 2)
rotation_matrix = rot @ shear @ scale # (N, 3, 3)
rotation_matrix = np.transpose(rotation_matrix, (0, 2, 1))
affine_matrix = np.hstack((rotation_matrix, translation))
affine_matrix = np.transpose(affine_matrix, (0, 2, 1))
return affine_matrix.astype(np.float32)
def create_theta_2d():
angle = np.array([np.pi / 4, np.pi / 3])
offset_x = np.array([5.0, 2.5])
offset_y = np.array([-3.3, 1.1])
shear_x = np.array([-0.5, 0.5])
shear_y = np.array([0.3, -0.3])
scale_x = np.array([2.2, 1.1])
scale_y = np.array([3.1, 0.9])
theta_2d = create_affine_matrix_2d(
angle, offset_x, offset_y, shear_x, shear_y, scale_x, scale_y
)
return theta_2d
def create_theta_3d():
angle1 = np.array([np.pi / 4, np.pi / 3])
angle2 = np.array([np.pi / 6, np.pi / 2])
offset_x = np.array([5.0, 2.5])
offset_y = np.array([-3.3, 1.1])
offset_z = np.array([-1.1, 2.2])
shear_x = np.array([-0.5, 0.5])
shear_y = np.array([0.3, -0.3])
shear_z = np.array([0.7, -0.2])
scale_x = np.array([2.2, 1.1])
scale_y = np.array([3.1, 0.9])
scale_z = np.array([0.5, 1.5])
theta_3d = create_affine_matrix_3d(
angle1,
angle2,
offset_x,
offset_y,
offset_z,
shear_x,
shear_y,
shear_z,
scale_x,
scale_y,
scale_z,
)
return theta_3d
class AffineGrid(Base):
@staticmethod
def export_2d_no_reference_evaluator() -> None:
theta_2d = create_theta_2d()
N, C, H, W = len(theta_2d), 3, 5, 6
data_size = (H, W)
for align_corners in (0, 1):
node = onnx.helper.make_node(
"AffineGrid",
inputs=["theta", "size"],
outputs=["grid"],
align_corners=align_corners,
)
original_grid = construct_original_grid(data_size, align_corners)
grid = apply_affine_transform(theta_2d, original_grid)
test_name = "test_affine_grid_2d"
if align_corners == 1:
test_name += "_align_corners"
expect(
node,
inputs=[theta_2d, np.array([N, C, H, W], dtype=np.int64)],
outputs=[grid],
name=test_name,
)
@staticmethod
def export_3d_no_reference_evaluator() -> None:
theta_3d = create_theta_3d()
N, C, D, H, W = len(theta_3d), 3, 4, 5, 6
data_size = (D, H, W)
for align_corners in (0, 1):
node = onnx.helper.make_node(
"AffineGrid",
inputs=["theta", "size"],
outputs=["grid"],
align_corners=align_corners,
)
original_grid = construct_original_grid(data_size, align_corners)
grid = apply_affine_transform(theta_3d, original_grid)
test_name = "test_affine_grid_3d"
if align_corners == 1:
test_name += "_align_corners"
expect(
node,
inputs=[theta_3d, np.array([N, C, D, H, W], dtype=np.int64)],
outputs=[grid],
name=test_name,
)