Kano001's picture
Upload 2707 files
dc2106c verified
raw
history blame
4.49 kB
# Copyright (c) ONNX Project Contributors
#
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import onnx
from onnx.backend.test.case.base import Base
from onnx.backend.test.case.node import expect
from onnx.defs import AI_ONNX_PREVIEW_TRAINING_DOMAIN
def apply_adam(r, t, x, g, v, h, norm_coefficient, norm_coefficient_post, alpha, beta, epsilon): # type: ignore
# Add gradient of regularization term.
g_regularized = norm_coefficient * x + g
# Update momentum.
v_new = alpha * v + (1 - alpha) * g_regularized
# Update second-order momentum.
h_new = beta * h + (1 - beta) * (g_regularized * g_regularized)
# Compute element-wise square root.
h_sqrt = np.sqrt(h_new) + epsilon
# Adjust learning rate.
r_adjusted = None
if t > 0:
# Consider bias correction on momentums.
r_adjusted = r * np.sqrt(1 - beta**t) / (1 - alpha**t)
else:
# No bias correction on momentums.
r_adjusted = r
# Apply Adam update rule.
x_new = x - r_adjusted * (v_new / h_sqrt)
# It's possible to apply regularization in the end.
x_final = (1 - norm_coefficient_post) * x_new
return x_final, v_new, h_new
class Adam(Base):
@staticmethod
def export_adam() -> None:
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.1
epsilon = 1e-7
# Create operator.
node = onnx.helper.make_node(
"Adam",
inputs=["R", "T", "X", "G", "V", "H"],
outputs=["X_new", "V_new", "H_new"],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
epsilon=epsilon,
domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN,
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x = np.array([1.2, 2.8], dtype=np.float32)
g = np.array([-0.94, -2.5], dtype=np.float32)
v = np.array([1.7, 3.6], dtype=np.float32)
h = np.array([0.1, 0.1], dtype=np.float32)
# Compute expected outputs of Adam.
x_new, v_new, h_new = apply_adam(
r, t, x, g, v, h, norm_coefficient, 0.0, alpha, beta, epsilon
)
# Check results.
expect(
node,
inputs=[r, t, x, g, v, h],
outputs=[x_new, v_new, h_new],
name="test_adam",
opset_imports=[
onnx.helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)
],
)
@staticmethod
def export_adam_multiple() -> None:
# Define operator attributes.
norm_coefficient = 0.001
alpha = 0.95
beta = 0.85
epsilon = 1e-2
node = onnx.helper.make_node(
"Adam",
inputs=["R", "T", "X1", "X2", "G1", "G2", "V1", "V2", "H1", "H2"],
outputs=["X1_new", "X2_new", "V1_new", "V2_new", "H1_new", "H2_new"],
norm_coefficient=norm_coefficient,
alpha=alpha,
beta=beta,
domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN,
)
# Define operator inputs.
r = np.array(0.1, dtype=np.float32) # scalar
t = np.array(0, dtype=np.int64) # scalar
x1 = np.array([1.0], dtype=np.float32)
g1 = np.array([-1.0], dtype=np.float32)
v1 = np.array([2.0], dtype=np.float32)
h1 = np.array([0.5], dtype=np.float32)
x2 = np.array([1.0, 2.0], dtype=np.float32)
g2 = np.array([-1.0, -3.0], dtype=np.float32)
v2 = np.array([4.0, 1.0], dtype=np.float32)
h2 = np.array([1.0, 10.0], dtype=np.float32)
# Compute expected outputs of Adam.
x1_new, v1_new, h1_new = apply_adam(
r, t, x1, g1, v1, h1, norm_coefficient, 0.0, alpha, beta, epsilon
)
x2_new, v2_new, h2_new = apply_adam(
r, t, x2, g2, v2, h2, norm_coefficient, 0.0, alpha, beta, epsilon
)
# Check results.
expect(
node,
inputs=[r, t, x1, x2, g1, g2, v1, v2, h1, h2],
outputs=[x1_new, x2_new, v1_new, v2_new, h1_new, h2_new],
name="test_adam_multiple",
opset_imports=[
onnx.helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1)
],
)