Spaces:
Running
Running
# Copyright (c) ONNX Project Contributors | |
# | |
# SPDX-License-Identifier: Apache-2.0 | |
import numpy as np | |
import onnx | |
from onnx.backend.test.case.base import Base | |
from onnx.backend.test.case.node import expect | |
from onnx.defs import AI_ONNX_PREVIEW_TRAINING_DOMAIN | |
def apply_adam(r, t, x, g, v, h, norm_coefficient, norm_coefficient_post, alpha, beta, epsilon): # type: ignore | |
# Add gradient of regularization term. | |
g_regularized = norm_coefficient * x + g | |
# Update momentum. | |
v_new = alpha * v + (1 - alpha) * g_regularized | |
# Update second-order momentum. | |
h_new = beta * h + (1 - beta) * (g_regularized * g_regularized) | |
# Compute element-wise square root. | |
h_sqrt = np.sqrt(h_new) + epsilon | |
# Adjust learning rate. | |
r_adjusted = None | |
if t > 0: | |
# Consider bias correction on momentums. | |
r_adjusted = r * np.sqrt(1 - beta**t) / (1 - alpha**t) | |
else: | |
# No bias correction on momentums. | |
r_adjusted = r | |
# Apply Adam update rule. | |
x_new = x - r_adjusted * (v_new / h_sqrt) | |
# It's possible to apply regularization in the end. | |
x_final = (1 - norm_coefficient_post) * x_new | |
return x_final, v_new, h_new | |
class Adam(Base): | |
def export_adam() -> None: | |
# Define operator attributes. | |
norm_coefficient = 0.001 | |
alpha = 0.95 | |
beta = 0.1 | |
epsilon = 1e-7 | |
# Create operator. | |
node = onnx.helper.make_node( | |
"Adam", | |
inputs=["R", "T", "X", "G", "V", "H"], | |
outputs=["X_new", "V_new", "H_new"], | |
norm_coefficient=norm_coefficient, | |
alpha=alpha, | |
beta=beta, | |
epsilon=epsilon, | |
domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN, | |
) | |
# Define operator inputs. | |
r = np.array(0.1, dtype=np.float32) # scalar | |
t = np.array(0, dtype=np.int64) # scalar | |
x = np.array([1.2, 2.8], dtype=np.float32) | |
g = np.array([-0.94, -2.5], dtype=np.float32) | |
v = np.array([1.7, 3.6], dtype=np.float32) | |
h = np.array([0.1, 0.1], dtype=np.float32) | |
# Compute expected outputs of Adam. | |
x_new, v_new, h_new = apply_adam( | |
r, t, x, g, v, h, norm_coefficient, 0.0, alpha, beta, epsilon | |
) | |
# Check results. | |
expect( | |
node, | |
inputs=[r, t, x, g, v, h], | |
outputs=[x_new, v_new, h_new], | |
name="test_adam", | |
opset_imports=[ | |
onnx.helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1) | |
], | |
) | |
def export_adam_multiple() -> None: | |
# Define operator attributes. | |
norm_coefficient = 0.001 | |
alpha = 0.95 | |
beta = 0.85 | |
epsilon = 1e-2 | |
node = onnx.helper.make_node( | |
"Adam", | |
inputs=["R", "T", "X1", "X2", "G1", "G2", "V1", "V2", "H1", "H2"], | |
outputs=["X1_new", "X2_new", "V1_new", "V2_new", "H1_new", "H2_new"], | |
norm_coefficient=norm_coefficient, | |
alpha=alpha, | |
beta=beta, | |
domain=AI_ONNX_PREVIEW_TRAINING_DOMAIN, | |
) | |
# Define operator inputs. | |
r = np.array(0.1, dtype=np.float32) # scalar | |
t = np.array(0, dtype=np.int64) # scalar | |
x1 = np.array([1.0], dtype=np.float32) | |
g1 = np.array([-1.0], dtype=np.float32) | |
v1 = np.array([2.0], dtype=np.float32) | |
h1 = np.array([0.5], dtype=np.float32) | |
x2 = np.array([1.0, 2.0], dtype=np.float32) | |
g2 = np.array([-1.0, -3.0], dtype=np.float32) | |
v2 = np.array([4.0, 1.0], dtype=np.float32) | |
h2 = np.array([1.0, 10.0], dtype=np.float32) | |
# Compute expected outputs of Adam. | |
x1_new, v1_new, h1_new = apply_adam( | |
r, t, x1, g1, v1, h1, norm_coefficient, 0.0, alpha, beta, epsilon | |
) | |
x2_new, v2_new, h2_new = apply_adam( | |
r, t, x2, g2, v2, h2, norm_coefficient, 0.0, alpha, beta, epsilon | |
) | |
# Check results. | |
expect( | |
node, | |
inputs=[r, t, x1, x2, g1, g2, v1, v2, h1, h2], | |
outputs=[x1_new, x2_new, v1_new, v2_new, h1_new, h2_new], | |
name="test_adam_multiple", | |
opset_imports=[ | |
onnx.helper.make_opsetid(AI_ONNX_PREVIEW_TRAINING_DOMAIN, 1) | |
], | |
) | |