Spaces:
Running
Running
namespace caffe2 { | |
namespace serialize { | |
constexpr uint64_t kMinSupportedFileFormatVersion = 0x1L; | |
constexpr uint64_t kMaxSupportedFileFormatVersion = 0xAL; | |
// Versions (i.e. why was the version number bumped?) | |
// Note [Dynamic Versions and torch.jit.save vs. torch.save] | |
// | |
// Our versioning scheme has a "produced file format version" which | |
// describes how an archive is to be read. The version written in an archive | |
// is at least this current produced file format version, but may be greater | |
// if it includes certain symbols. We refer to these conditional versions | |
// as "dynamic," since they are identified at runtime. | |
// | |
// Dynamic versioning is useful when an operator's semantics are updated. | |
// When using torch.jit.save we want those semantics to be preserved. If | |
// we bumped the produced file format version on every change, however, | |
// then older versions of PyTorch couldn't read even simple archives, like | |
// a single tensor, from newer versions of PyTorch. Instead, we | |
// assign dynamic versions to these changes that override the | |
// produced file format version as needed. That is, when the semantics | |
// of torch.div changed it was assigned dynamic version 4, and when | |
// torch.jit.saving modules that use torch.div those archives also have | |
// (at least) version 4. This prevents earlier versions of PyTorch | |
// from accidentally performing the wrong kind of division. Modules | |
// that don't use torch.div or other operators with dynamic versions | |
// can write the produced file format version, and these programs will | |
// run as expected on earlier versions of PyTorch. | |
// | |
// While torch.jit.save attempts to preserve operator semantics, | |
// torch.save does not. torch.save is analogous to pickling Python, so | |
// a function that uses torch.div will have different behavior if torch.saved | |
// and torch.loaded across PyTorch versions. From a technical perspective, | |
// torch.save ignores dynamic versioning. | |
// 1. Initial version | |
// 2. Removed op_version_set version numbers | |
// 3. Added type tags to pickle serialization of container types | |
// 4. (Dynamic) Stopped integer division using torch.div | |
// (a versioned symbol preserves the historic behavior of versions 1--3) | |
// 5. (Dynamic) Stops torch.full inferring a floating point dtype | |
// when given bool or integer fill values. | |
// 6. Write version string to `./data/version` instead of `version`. | |
// [12/15/2021] | |
// kProducedFileFormatVersion is set to 7 from 3 due to a different | |
// interpretation of what file format version is. | |
// Whenever there is new upgrader introduced, | |
// this number should be bumped. | |
// The reasons that version is bumped in the past: | |
// 1. aten::div is changed at version 4 | |
// 2. aten::full is changed at version 5 | |
// 3. torch.package uses version 6 | |
// 4. Introduce new upgrader design and set the version number to 7 | |
// mark this change | |
// -------------------------------------------------- | |
// We describe new operator version bump reasons here: | |
// 1) [01/24/2022] | |
// We bump the version number to 8 to update aten::linspace | |
// and aten::linspace.out to error out when steps is not | |
// provided. (see: https://github.com/pytorch/pytorch/issues/55951) | |
// 2) [01/30/2022] | |
// Bump the version number to 9 to update aten::logspace and | |
// and aten::logspace.out to error out when steps is not | |
// provided. (see: https://github.com/pytorch/pytorch/issues/55951) | |
// 3) [02/11/2022] | |
// Bump the version number to 10 to update aten::gelu and | |
// and aten::gelu.out to support the new approximate kwarg. | |
// (see: https://github.com/pytorch/pytorch/pull/61439) | |
constexpr uint64_t kProducedFileFormatVersion = 0xAL; | |
// Absolute minimum version we will write packages. This | |
// means that every package from now on will always be | |
// greater than this number. | |
constexpr uint64_t kMinProducedFileFormatVersion = 0x3L; | |
// The version we write when the archive contains bytecode. | |
// It must be higher or eq to kProducedFileFormatVersion. | |
// Because torchscript changes is likely introduce bytecode change. | |
// If kProducedFileFormatVersion is increased, kProducedBytecodeVersion | |
// should be increased too. The relationship is: | |
// kMaxSupportedFileFormatVersion >= (most likely ==) kProducedBytecodeVersion | |
// >= kProducedFileFormatVersion | |
// If a format change is forward compatible (still readable by older | |
// executables), we will not increment the version number, to minimize the | |
// risk of breaking existing clients. TODO: A better way would be to allow | |
// the caller that creates a model to specify a maximum version that its | |
// clients can accept. | |
// Versions: | |
// 0x1L: Initial version | |
// 0x2L: (Comment missing) | |
// 0x3L: (Comment missing) | |
// 0x4L: (update) Added schema to function tuple. Forward-compatible change. | |
// 0x5L: (update) Update bytecode is sharing constant tensor files from | |
// torchscript, and only serialize extra tensors that are not in the | |
// torchscript constant table. Also update tensor storage schema adapting to | |
// the unify format, the root key of tensor storage is updated from {index} to | |
// {the_pointer_value_the_tensor.storage}, for example: | |
// `140245072983168.storage` Forward-compatibility change. | |
// 0x6L: Implicit opereator versioning using number of specified argument. | |
// Refer to the summary of https://github.com/pytorch/pytorch/pull/56845 for | |
// details. | |
// 0x7L: Enable support for operators with default arguments plus out | |
// arguments. Refer. See https://github.com/pytorch/pytorch/pull/63651 for | |
// details. | |
// 0x8L: Emit promoted operators as instructions. See | |
// https://github.com/pytorch/pytorch/pull/71662 for details. | |
// 0x9L: Change serialization format from pickle to format This version is to | |
// serve migration. v8 pickle and v9 flatbuffer are the same. Refer to the | |
// summary of https://github.com/pytorch/pytorch/pull/75201 for more details. | |
constexpr uint64_t kProducedBytecodeVersion = 0x8L; | |
// static_assert( | |
// kProducedBytecodeVersion >= kProducedFileFormatVersion, | |
// "kProducedBytecodeVersion must be higher or equal to | |
// kProducedFileFormatVersion."); | |
// Introduce kMinSupportedBytecodeVersion and kMaxSupportedBytecodeVersion | |
// for limited backward/forward compatibility support of bytecode. If | |
// kMinSupportedBytecodeVersion <= model_version <= kMaxSupportedBytecodeVersion | |
// (in loader), we should support this model_version. For example, we provide a | |
// wrapper to handle an updated operator. | |
constexpr uint64_t kMinSupportedBytecodeVersion = 0x4L; | |
constexpr uint64_t kMaxSupportedBytecodeVersion = 0x9L; | |
} // namespace serialize | |
} // namespace caffe2 | |