Spaces:
Running
Running
# To use this file, the dependency (https://github.com/vesis84/kaldi-io-for-python) | |
# needs to be installed. This is a light wrapper around kaldi_io that returns | |
# torch.Tensors. | |
from typing import Any, Callable, Iterable, Tuple | |
import torch | |
from torch import Tensor | |
from torchaudio._internal import module_utils as _mod_utils | |
if _mod_utils.is_module_available("numpy"): | |
import numpy as np | |
__all__ = [ | |
"read_vec_int_ark", | |
"read_vec_flt_scp", | |
"read_vec_flt_ark", | |
"read_mat_scp", | |
"read_mat_ark", | |
] | |
def _convert_method_output_to_tensor( | |
file_or_fd: Any, fn: Callable, convert_contiguous: bool = False | |
) -> Iterable[Tuple[str, Tensor]]: | |
r"""Takes a method invokes it. The output is converted to a tensor. | |
Args: | |
file_or_fd (str/FileDescriptor): File name or file descriptor | |
fn (Callable): Function that has the signature (file name/descriptor) and converts it to | |
Iterable[Tuple[str, Tensor]]. | |
convert_contiguous (bool, optional): Determines whether the array should be converted into a | |
contiguous layout. (Default: ``False``) | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is vec/mat | |
""" | |
for key, np_arr in fn(file_or_fd): | |
if convert_contiguous: | |
np_arr = np.ascontiguousarray(np_arr) | |
yield key, torch.from_numpy(np_arr) | |
def read_vec_int_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: | |
r"""Create generator of (key,vector<int>) tuples, which reads from the ark file/stream. | |
Args: | |
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file | |
Example | |
>>> # read ark to a 'dictionary' | |
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_int_ark(file) } | |
""" | |
import kaldi_io | |
# Requires convert_contiguous to be True because elements from int32 vector are | |
# sorted in tuples: (sizeof(int32), value) so strides are (5,) instead of (4,) which will throw an error | |
# in from_numpy as it expects strides to be a multiple of 4 (int32). | |
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_int_ark, convert_contiguous=True) | |
def read_vec_flt_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: | |
r"""Create generator of (key,vector<float32/float64>) tuples, read according to Kaldi scp. | |
Args: | |
file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file | |
Example | |
>>> # read scp to a 'dictionary' | |
>>> # d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_scp(file) } | |
""" | |
import kaldi_io | |
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_scp) | |
def read_vec_flt_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: | |
r"""Create generator of (key,vector<float32/float64>) tuples, which reads from the ark file/stream. | |
Args: | |
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the vector read from file | |
Example | |
>>> # read ark to a 'dictionary' | |
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_vec_flt_ark(file) } | |
""" | |
import kaldi_io | |
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_vec_flt_ark) | |
def read_mat_scp(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: | |
r"""Create generator of (key,matrix<float32/float64>) tuples, read according to Kaldi scp. | |
Args: | |
file_or_fd (str/FileDescriptor): scp, gzipped scp, pipe or opened file descriptor | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file | |
Example | |
>>> # read scp to a 'dictionary' | |
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_scp(file) } | |
""" | |
import kaldi_io | |
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_scp) | |
def read_mat_ark(file_or_fd: Any) -> Iterable[Tuple[str, Tensor]]: | |
r"""Create generator of (key,matrix<float32/float64>) tuples, which reads from the ark file/stream. | |
Args: | |
file_or_fd (str/FileDescriptor): ark, gzipped ark, pipe or opened file descriptor | |
Returns: | |
Iterable[Tuple[str, Tensor]]: The string is the key and the tensor is the matrix read from file | |
Example | |
>>> # read ark to a 'dictionary' | |
>>> d = { u:d for u,d in torchaudio.kaldi_io.read_mat_ark(file) } | |
""" | |
import kaldi_io | |
return _convert_method_output_to_tensor(file_or_fd, kaldi_io.read_mat_ark) | |