Spaces:
Running
Running
import os | |
from pathlib import Path | |
from typing import List, Tuple, Union | |
import torchaudio | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar | |
_RELEASE_CONFIGS = { | |
"release1": { | |
"folder_in_archive": "waves_yesno", | |
"url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz", | |
"checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73", | |
} | |
} | |
class YESNO(Dataset): | |
"""*YesNo* :cite:`YesNo` dataset. | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
url (str, optional): The URL to download the dataset from. | |
(default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``) | |
folder_in_archive (str, optional): | |
The top-level directory of the dataset. (default: ``"waves_yesno"``) | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
""" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
url: str = _RELEASE_CONFIGS["release1"]["url"], | |
folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], | |
download: bool = False, | |
) -> None: | |
self._parse_filesystem(root, url, folder_in_archive, download) | |
def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: | |
root = Path(root) | |
archive = os.path.basename(url) | |
archive = root / archive | |
self._path = root / folder_in_archive | |
if download: | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
checksum = _RELEASE_CONFIGS["release1"]["checksum"] | |
download_url_to_file(url, archive, hash_prefix=checksum) | |
_extract_tar(archive) | |
if not os.path.isdir(self._path): | |
raise RuntimeError("Dataset not found. Please use `download=True` to download it.") | |
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav")) | |
def _load_item(self, fileid: str, path: str): | |
labels = [int(c) for c in fileid.split("_")] | |
file_audio = os.path.join(path, fileid + ".wav") | |
waveform, sample_rate = torchaudio.load(file_audio) | |
return waveform, sample_rate, labels | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
List[int]: | |
labels | |
""" | |
fileid = self._walker[n] | |
item = self._load_item(fileid, self._path) | |
return item | |
def __len__(self) -> int: | |
return len(self._walker) | |