Spaces:
Running
Running
import os | |
import re | |
from pathlib import Path | |
from typing import Optional, Tuple, Union | |
import torch | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar, _load_waveform | |
URL = "https://speech.fit.vutbr.cz/files/quesst14Database.tgz" | |
SAMPLE_RATE = 8000 | |
_CHECKSUM = "4f869e06bc066bbe9c5dde31dbd3909a0870d70291110ebbb38878dcbc2fc5e4" | |
_LANGUAGES = [ | |
"albanian", | |
"basque", | |
"czech", | |
"nnenglish", | |
"romanian", | |
"slovak", | |
] | |
class QUESST14(Dataset): | |
"""*QUESST14* :cite:`Mir2015QUESST2014EQ` dataset. | |
Args: | |
root (str or Path): Root directory where the dataset's top level directory is found | |
subset (str): Subset of the dataset to use. Options: [``"docs"``, ``"dev"``, ``"eval"``]. | |
language (str or None, optional): Language to get dataset for. | |
Options: [``None``, ``albanian``, ``basque``, ``czech``, ``nnenglish``, ``romanian``, ``slovak``]. | |
If ``None``, dataset consists of all languages. (default: ``"nnenglish"``) | |
download (bool, optional): Whether to download the dataset if it is not found at root path. | |
(default: ``False``) | |
""" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
subset: str, | |
language: Optional[str] = "nnenglish", | |
download: bool = False, | |
) -> None: | |
if subset not in ["docs", "dev", "eval"]: | |
raise ValueError("`subset` must be one of ['docs', 'dev', 'eval']") | |
if language is not None and language not in _LANGUAGES: | |
raise ValueError(f"`language` must be None or one of {str(_LANGUAGES)}") | |
# Get string representation of 'root' | |
root = os.fspath(root) | |
basename = os.path.basename(URL) | |
archive = os.path.join(root, basename) | |
basename = basename.rsplit(".", 2)[0] | |
self._path = os.path.join(root, basename) | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
if not download: | |
raise RuntimeError("Dataset not found. Please use `download=True` to download") | |
download_url_to_file(URL, archive, hash_prefix=_CHECKSUM) | |
_extract_tar(archive, root) | |
if subset == "docs": | |
self.data = filter_audio_paths(self._path, language, "language_key_utterances.lst") | |
elif subset == "dev": | |
self.data = filter_audio_paths(self._path, language, "language_key_dev.lst") | |
elif subset == "eval": | |
self.data = filter_audio_paths(self._path, language, "language_key_eval.lst") | |
def get_metadata(self, n: int) -> Tuple[str, int, str]: | |
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform, | |
but otherwise returns the same fields as :py:func:`__getitem__`. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
str: | |
Path to audio | |
int: | |
Sample rate | |
str: | |
File name | |
""" | |
audio_path = self.data[n] | |
relpath = os.path.relpath(audio_path, self._path) | |
return relpath, SAMPLE_RATE, audio_path.with_suffix("").name | |
def __getitem__(self, n: int) -> Tuple[torch.Tensor, int, str]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
File name | |
""" | |
metadata = self.get_metadata(n) | |
waveform = _load_waveform(self._path, metadata[0], metadata[1]) | |
return (waveform,) + metadata[1:] | |
def __len__(self) -> int: | |
return len(self.data) | |
def filter_audio_paths( | |
path: str, | |
language: str, | |
lst_name: str, | |
): | |
"""Extract audio paths for the given language.""" | |
audio_paths = [] | |
path = Path(path) | |
with open(path / "scoring" / lst_name) as f: | |
for line in f: | |
audio_path, lang = line.strip().split() | |
if language is not None and lang != language: | |
continue | |
audio_path = re.sub(r"^.*?\/", "", audio_path) | |
audio_paths.append(path / audio_path) | |
return audio_paths | |