Spaces:
Running
Running
import csv | |
import os | |
from pathlib import Path | |
from typing import Tuple, Union | |
import torchaudio | |
from torch import Tensor | |
from torch.utils.data import Dataset | |
from torchaudio._internal import download_url_to_file | |
from torchaudio.datasets.utils import _extract_tar | |
_RELEASE_CONFIGS = { | |
"release1": { | |
"folder_in_archive": "wavs", | |
"url": "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2", | |
"checksum": "be1a30453f28eb8dd26af4101ae40cbf2c50413b1bb21936cbcdc6fae3de8aa5", | |
} | |
} | |
class LJSPEECH(Dataset): | |
"""*LJSpeech-1.1* :cite:`ljspeech17` dataset. | |
Args: | |
root (str or Path): Path to the directory where the dataset is found or downloaded. | |
url (str, optional): The URL to download the dataset from. | |
(default: ``"https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"``) | |
folder_in_archive (str, optional): | |
The top-level directory of the dataset. (default: ``"wavs"``) | |
download (bool, optional): | |
Whether to download the dataset if it is not found at root path. (default: ``False``). | |
""" | |
def __init__( | |
self, | |
root: Union[str, Path], | |
url: str = _RELEASE_CONFIGS["release1"]["url"], | |
folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"], | |
download: bool = False, | |
) -> None: | |
self._parse_filesystem(root, url, folder_in_archive, download) | |
def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None: | |
root = Path(root) | |
basename = os.path.basename(url) | |
archive = root / basename | |
basename = Path(basename.split(".tar.bz2")[0]) | |
folder_in_archive = basename / folder_in_archive | |
self._path = root / folder_in_archive | |
self._metadata_path = root / basename / "metadata.csv" | |
if download: | |
if not os.path.isdir(self._path): | |
if not os.path.isfile(archive): | |
checksum = _RELEASE_CONFIGS["release1"]["checksum"] | |
download_url_to_file(url, archive, hash_prefix=checksum) | |
_extract_tar(archive) | |
else: | |
if not os.path.exists(self._path): | |
raise RuntimeError( | |
f"The path {self._path} doesn't exist. " | |
"Please check the ``root`` path or set `download=True` to download it" | |
) | |
with open(self._metadata_path, "r", newline="") as metadata: | |
flist = csv.reader(metadata, delimiter="|", quoting=csv.QUOTE_NONE) | |
self._flist = list(flist) | |
def __getitem__(self, n: int) -> Tuple[Tensor, int, str, str]: | |
"""Load the n-th sample from the dataset. | |
Args: | |
n (int): The index of the sample to be loaded | |
Returns: | |
Tuple of the following items; | |
Tensor: | |
Waveform | |
int: | |
Sample rate | |
str: | |
Transcript | |
str: | |
Normalized Transcript | |
""" | |
line = self._flist[n] | |
fileid, transcript, normalized_transcript = line | |
fileid_audio = self._path / (fileid + ".wav") | |
# Load audio | |
waveform, sample_rate = torchaudio.load(fileid_audio) | |
return ( | |
waveform, | |
sample_rate, | |
transcript, | |
normalized_transcript, | |
) | |
def __len__(self) -> int: | |
return len(self._flist) | |