Spaces:
Running
Running
from sympy.core import symbols, Symbol, Tuple, oo, Dummy | |
from sympy.tensor.indexed import IndexException | |
from sympy.testing.pytest import raises | |
from sympy.utilities.iterables import iterable | |
# import test: | |
from sympy.concrete.summations import Sum | |
from sympy.core.function import Function, Subs, Derivative | |
from sympy.core.relational import (StrictLessThan, GreaterThan, | |
StrictGreaterThan, LessThan) | |
from sympy.core.singleton import S | |
from sympy.functions.elementary.exponential import exp, log | |
from sympy.functions.elementary.trigonometric import cos, sin | |
from sympy.functions.special.tensor_functions import KroneckerDelta | |
from sympy.series.order import Order | |
from sympy.sets.fancysets import Range | |
from sympy.tensor.indexed import IndexedBase, Idx, Indexed | |
def test_Idx_construction(): | |
i, a, b = symbols('i a b', integer=True) | |
assert Idx(i) != Idx(i, 1) | |
assert Idx(i, a) == Idx(i, (0, a - 1)) | |
assert Idx(i, oo) == Idx(i, (0, oo)) | |
x = symbols('x', integer=False) | |
raises(TypeError, lambda: Idx(x)) | |
raises(TypeError, lambda: Idx(0.5)) | |
raises(TypeError, lambda: Idx(i, x)) | |
raises(TypeError, lambda: Idx(i, 0.5)) | |
raises(TypeError, lambda: Idx(i, (x, 5))) | |
raises(TypeError, lambda: Idx(i, (2, x))) | |
raises(TypeError, lambda: Idx(i, (2, 3.5))) | |
def test_Idx_properties(): | |
i, a, b = symbols('i a b', integer=True) | |
assert Idx(i).is_integer | |
assert Idx(i).name == 'i' | |
assert Idx(i + 2).name == 'i + 2' | |
assert Idx('foo').name == 'foo' | |
def test_Idx_bounds(): | |
i, a, b = symbols('i a b', integer=True) | |
assert Idx(i).lower is None | |
assert Idx(i).upper is None | |
assert Idx(i, a).lower == 0 | |
assert Idx(i, a).upper == a - 1 | |
assert Idx(i, 5).lower == 0 | |
assert Idx(i, 5).upper == 4 | |
assert Idx(i, oo).lower == 0 | |
assert Idx(i, oo).upper is oo | |
assert Idx(i, (a, b)).lower == a | |
assert Idx(i, (a, b)).upper == b | |
assert Idx(i, (1, 5)).lower == 1 | |
assert Idx(i, (1, 5)).upper == 5 | |
assert Idx(i, (-oo, oo)).lower is -oo | |
assert Idx(i, (-oo, oo)).upper is oo | |
def test_Idx_fixed_bounds(): | |
i, a, b, x = symbols('i a b x', integer=True) | |
assert Idx(x).lower is None | |
assert Idx(x).upper is None | |
assert Idx(x, a).lower == 0 | |
assert Idx(x, a).upper == a - 1 | |
assert Idx(x, 5).lower == 0 | |
assert Idx(x, 5).upper == 4 | |
assert Idx(x, oo).lower == 0 | |
assert Idx(x, oo).upper is oo | |
assert Idx(x, (a, b)).lower == a | |
assert Idx(x, (a, b)).upper == b | |
assert Idx(x, (1, 5)).lower == 1 | |
assert Idx(x, (1, 5)).upper == 5 | |
assert Idx(x, (-oo, oo)).lower is -oo | |
assert Idx(x, (-oo, oo)).upper is oo | |
def test_Idx_inequalities(): | |
i14 = Idx("i14", (1, 4)) | |
i79 = Idx("i79", (7, 9)) | |
i46 = Idx("i46", (4, 6)) | |
i35 = Idx("i35", (3, 5)) | |
assert i14 <= 5 | |
assert i14 < 5 | |
assert not (i14 >= 5) | |
assert not (i14 > 5) | |
assert 5 >= i14 | |
assert 5 > i14 | |
assert not (5 <= i14) | |
assert not (5 < i14) | |
assert LessThan(i14, 5) | |
assert StrictLessThan(i14, 5) | |
assert not GreaterThan(i14, 5) | |
assert not StrictGreaterThan(i14, 5) | |
assert i14 <= 4 | |
assert isinstance(i14 < 4, StrictLessThan) | |
assert isinstance(i14 >= 4, GreaterThan) | |
assert not (i14 > 4) | |
assert isinstance(i14 <= 1, LessThan) | |
assert not (i14 < 1) | |
assert i14 >= 1 | |
assert isinstance(i14 > 1, StrictGreaterThan) | |
assert not (i14 <= 0) | |
assert not (i14 < 0) | |
assert i14 >= 0 | |
assert i14 > 0 | |
from sympy.abc import x | |
assert isinstance(i14 < x, StrictLessThan) | |
assert isinstance(i14 > x, StrictGreaterThan) | |
assert isinstance(i14 <= x, LessThan) | |
assert isinstance(i14 >= x, GreaterThan) | |
assert i14 < i79 | |
assert i14 <= i79 | |
assert not (i14 > i79) | |
assert not (i14 >= i79) | |
assert i14 <= i46 | |
assert isinstance(i14 < i46, StrictLessThan) | |
assert isinstance(i14 >= i46, GreaterThan) | |
assert not (i14 > i46) | |
assert isinstance(i14 < i35, StrictLessThan) | |
assert isinstance(i14 > i35, StrictGreaterThan) | |
assert isinstance(i14 <= i35, LessThan) | |
assert isinstance(i14 >= i35, GreaterThan) | |
iNone1 = Idx("iNone1") | |
iNone2 = Idx("iNone2") | |
assert isinstance(iNone1 < iNone2, StrictLessThan) | |
assert isinstance(iNone1 > iNone2, StrictGreaterThan) | |
assert isinstance(iNone1 <= iNone2, LessThan) | |
assert isinstance(iNone1 >= iNone2, GreaterThan) | |
def test_Idx_inequalities_current_fails(): | |
i14 = Idx("i14", (1, 4)) | |
assert S(5) >= i14 | |
assert S(5) > i14 | |
assert not (S(5) <= i14) | |
assert not (S(5) < i14) | |
def test_Idx_func_args(): | |
i, a, b = symbols('i a b', integer=True) | |
ii = Idx(i) | |
assert ii.func(*ii.args) == ii | |
ii = Idx(i, a) | |
assert ii.func(*ii.args) == ii | |
ii = Idx(i, (a, b)) | |
assert ii.func(*ii.args) == ii | |
def test_Idx_subs(): | |
i, a, b = symbols('i a b', integer=True) | |
assert Idx(i, a).subs(a, b) == Idx(i, b) | |
assert Idx(i, a).subs(i, b) == Idx(b, a) | |
assert Idx(i).subs(i, 2) == Idx(2) | |
assert Idx(i, a).subs(a, 2) == Idx(i, 2) | |
assert Idx(i, (a, b)).subs(i, 2) == Idx(2, (a, b)) | |
def test_IndexedBase_sugar(): | |
i, j = symbols('i j', integer=True) | |
a = symbols('a') | |
A1 = Indexed(a, i, j) | |
A2 = IndexedBase(a) | |
assert A1 == A2[i, j] | |
assert A1 == A2[(i, j)] | |
assert A1 == A2[[i, j]] | |
assert A1 == A2[Tuple(i, j)] | |
assert all(a.is_Integer for a in A2[1, 0].args[1:]) | |
def test_IndexedBase_subs(): | |
i = symbols('i', integer=True) | |
a, b = symbols('a b') | |
A = IndexedBase(a) | |
B = IndexedBase(b) | |
assert A[i] == B[i].subs(b, a) | |
C = {1: 2} | |
assert C[1] == A[1].subs(A, C) | |
def test_IndexedBase_shape(): | |
i, j, m, n = symbols('i j m n', integer=True) | |
a = IndexedBase('a', shape=(m, m)) | |
b = IndexedBase('a', shape=(m, n)) | |
assert b.shape == Tuple(m, n) | |
assert a[i, j] != b[i, j] | |
assert a[i, j] == b[i, j].subs(n, m) | |
assert b.func(*b.args) == b | |
assert b[i, j].func(*b[i, j].args) == b[i, j] | |
raises(IndexException, lambda: b[i]) | |
raises(IndexException, lambda: b[i, i, j]) | |
F = IndexedBase("F", shape=m) | |
assert F.shape == Tuple(m) | |
assert F[i].subs(i, j) == F[j] | |
raises(IndexException, lambda: F[i, j]) | |
def test_IndexedBase_assumptions(): | |
i = Symbol('i', integer=True) | |
a = Symbol('a') | |
A = IndexedBase(a, positive=True) | |
for c in (A, A[i]): | |
assert c.is_real | |
assert c.is_complex | |
assert not c.is_imaginary | |
assert c.is_nonnegative | |
assert c.is_nonzero | |
assert c.is_commutative | |
assert log(exp(c)) == c | |
assert A != IndexedBase(a) | |
assert A == IndexedBase(a, positive=True, real=True) | |
assert A[i] != Indexed(a, i) | |
def test_IndexedBase_assumptions_inheritance(): | |
I = Symbol('I', integer=True) | |
I_inherit = IndexedBase(I) | |
I_explicit = IndexedBase('I', integer=True) | |
assert I_inherit.is_integer | |
assert I_explicit.is_integer | |
assert I_inherit.label.is_integer | |
assert I_explicit.label.is_integer | |
assert I_inherit == I_explicit | |
def test_issue_17652(): | |
"""Regression test issue #17652. | |
IndexedBase.label should not upcast subclasses of Symbol | |
""" | |
class SubClass(Symbol): | |
pass | |
x = SubClass('X') | |
assert type(x) == SubClass | |
base = IndexedBase(x) | |
assert type(x) == SubClass | |
assert type(base.label) == SubClass | |
def test_Indexed_constructor(): | |
i, j = symbols('i j', integer=True) | |
A = Indexed('A', i, j) | |
assert A == Indexed(Symbol('A'), i, j) | |
assert A == Indexed(IndexedBase('A'), i, j) | |
raises(TypeError, lambda: Indexed(A, i, j)) | |
raises(IndexException, lambda: Indexed("A")) | |
assert A.free_symbols == {A, A.base.label, i, j} | |
def test_Indexed_func_args(): | |
i, j = symbols('i j', integer=True) | |
a = symbols('a') | |
A = Indexed(a, i, j) | |
assert A == A.func(*A.args) | |
def test_Indexed_subs(): | |
i, j, k = symbols('i j k', integer=True) | |
a, b = symbols('a b') | |
A = IndexedBase(a) | |
B = IndexedBase(b) | |
assert A[i, j] == B[i, j].subs(b, a) | |
assert A[i, j] == A[i, k].subs(k, j) | |
def test_Indexed_properties(): | |
i, j = symbols('i j', integer=True) | |
A = Indexed('A', i, j) | |
assert A.name == 'A[i, j]' | |
assert A.rank == 2 | |
assert A.indices == (i, j) | |
assert A.base == IndexedBase('A') | |
assert A.ranges == [None, None] | |
raises(IndexException, lambda: A.shape) | |
n, m = symbols('n m', integer=True) | |
assert Indexed('A', Idx( | |
i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] | |
assert Indexed('A', Idx(i, m), Idx(j, n)).shape == Tuple(m, n) | |
raises(IndexException, lambda: Indexed("A", Idx(i, m), Idx(j)).shape) | |
def test_Indexed_shape_precedence(): | |
i, j = symbols('i j', integer=True) | |
o, p = symbols('o p', integer=True) | |
n, m = symbols('n m', integer=True) | |
a = IndexedBase('a', shape=(o, p)) | |
assert a.shape == Tuple(o, p) | |
assert Indexed( | |
a, Idx(i, m), Idx(j, n)).ranges == [Tuple(0, m - 1), Tuple(0, n - 1)] | |
assert Indexed(a, Idx(i, m), Idx(j, n)).shape == Tuple(o, p) | |
assert Indexed( | |
a, Idx(i, m), Idx(j)).ranges == [Tuple(0, m - 1), (None, None)] | |
assert Indexed(a, Idx(i, m), Idx(j)).shape == Tuple(o, p) | |
def test_complex_indices(): | |
i, j = symbols('i j', integer=True) | |
A = Indexed('A', i, i + j) | |
assert A.rank == 2 | |
assert A.indices == (i, i + j) | |
def test_not_interable(): | |
i, j = symbols('i j', integer=True) | |
A = Indexed('A', i, i + j) | |
assert not iterable(A) | |
def test_Indexed_coeff(): | |
N = Symbol('N', integer=True) | |
len_y = N | |
i = Idx('i', len_y-1) | |
y = IndexedBase('y', shape=(len_y,)) | |
a = (1/y[i+1]*y[i]).coeff(y[i]) | |
b = (y[i]/y[i+1]).coeff(y[i]) | |
assert a == b | |
def test_differentiation(): | |
from sympy.functions.special.tensor_functions import KroneckerDelta | |
i, j, k, l = symbols('i j k l', cls=Idx) | |
a = symbols('a') | |
m, n = symbols("m, n", integer=True, finite=True) | |
assert m.is_real | |
h, L = symbols('h L', cls=IndexedBase) | |
hi, hj = h[i], h[j] | |
expr = hi | |
assert expr.diff(hj) == KroneckerDelta(i, j) | |
assert expr.diff(hi) == KroneckerDelta(i, i) | |
expr = S(2) * hi | |
assert expr.diff(hj) == S(2) * KroneckerDelta(i, j) | |
assert expr.diff(hi) == S(2) * KroneckerDelta(i, i) | |
assert expr.diff(a) is S.Zero | |
assert Sum(expr, (i, -oo, oo)).diff(hj) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) | |
assert Sum(expr.diff(hj), (i, -oo, oo)) == Sum(2*KroneckerDelta(i, j), (i, -oo, oo)) | |
assert Sum(expr, (i, -oo, oo)).diff(hj).doit() == 2 | |
assert Sum(expr.diff(hi), (i, -oo, oo)).doit() == Sum(2, (i, -oo, oo)).doit() | |
assert Sum(expr, (i, -oo, oo)).diff(hi).doit() is oo | |
expr = a * hj * hj / S(2) | |
assert expr.diff(hi) == a * h[j] * KroneckerDelta(i, j) | |
assert expr.diff(a) == hj * hj / S(2) | |
assert expr.diff(a, 2) is S.Zero | |
assert Sum(expr, (i, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) | |
assert Sum(expr.diff(hi), (i, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (i, -oo, oo)) | |
assert Sum(expr, (i, -oo, oo)).diff(hi).doit() == a*h[j] | |
assert Sum(expr, (j, -oo, oo)).diff(hi) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) | |
assert Sum(expr.diff(hi), (j, -oo, oo)) == Sum(a*KroneckerDelta(i, j)*h[j], (j, -oo, oo)) | |
assert Sum(expr, (j, -oo, oo)).diff(hi).doit() == a*h[i] | |
expr = a * sin(hj * hj) | |
assert expr.diff(hi) == 2*a*cos(hj * hj) * hj * KroneckerDelta(i, j) | |
assert expr.diff(hj) == 2*a*cos(hj * hj) * hj | |
expr = a * L[i, j] * h[j] | |
assert expr.diff(hi) == a*L[i, j]*KroneckerDelta(i, j) | |
assert expr.diff(hj) == a*L[i, j] | |
assert expr.diff(L[i, j]) == a*h[j] | |
assert expr.diff(L[k, l]) == a*KroneckerDelta(i, k)*KroneckerDelta(j, l)*h[j] | |
assert expr.diff(L[i, l]) == a*KroneckerDelta(j, l)*h[j] | |
assert Sum(expr, (j, -oo, oo)).diff(L[k, l]) == Sum(a * KroneckerDelta(i, k) * KroneckerDelta(j, l) * h[j], (j, -oo, oo)) | |
assert Sum(expr, (j, -oo, oo)).diff(L[k, l]).doit() == a * KroneckerDelta(i, k) * h[l] | |
assert h[m].diff(h[m]) == 1 | |
assert h[m].diff(h[n]) == KroneckerDelta(m, n) | |
assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (m, -oo, oo)) | |
assert Sum(a*h[m], (m, -oo, oo)).diff(h[n]).doit() == a | |
assert Sum(a*h[m], (n, -oo, oo)).diff(h[n]) == Sum(a*KroneckerDelta(m, n), (n, -oo, oo)) | |
assert Sum(a*h[m], (m, -oo, oo)).diff(h[m]).doit() == oo*a | |
def test_indexed_series(): | |
A = IndexedBase("A") | |
i = symbols("i", integer=True) | |
assert sin(A[i]).series(A[i]) == A[i] - A[i]**3/6 + A[i]**5/120 + Order(A[i]**6, A[i]) | |
def test_indexed_is_constant(): | |
A = IndexedBase("A") | |
i, j, k = symbols("i,j,k") | |
assert not A[i].is_constant() | |
assert A[i].is_constant(j) | |
assert not A[1+2*i, k].is_constant() | |
assert not A[1+2*i, k].is_constant(i) | |
assert A[1+2*i, k].is_constant(j) | |
assert not A[1+2*i, k].is_constant(k) | |
def test_issue_12533(): | |
d = IndexedBase('d') | |
assert IndexedBase(range(5)) == Range(0, 5, 1) | |
assert d[0].subs(Symbol("d"), range(5)) == 0 | |
assert d[0].subs(d, range(5)) == 0 | |
assert d[1].subs(d, range(5)) == 1 | |
assert Indexed(Range(5), 2) == 2 | |
def test_issue_12780(): | |
n = symbols("n") | |
i = Idx("i", (0, n)) | |
raises(TypeError, lambda: i.subs(n, 1.5)) | |
def test_issue_18604(): | |
m = symbols("m") | |
assert Idx("i", m).name == 'i' | |
assert Idx("i", m).lower == 0 | |
assert Idx("i", m).upper == m - 1 | |
m = symbols("m", real=False) | |
raises(TypeError, lambda: Idx("i", m)) | |
def test_Subs_with_Indexed(): | |
A = IndexedBase("A") | |
i, j, k = symbols("i,j,k") | |
x, y, z = symbols("x,y,z") | |
f = Function("f") | |
assert Subs(A[i], A[i], A[j]).diff(A[j]) == 1 | |
assert Subs(A[i], A[i], x).diff(A[i]) == 0 | |
assert Subs(A[i], A[i], x).diff(A[j]) == 0 | |
assert Subs(A[i], A[i], x).diff(x) == 1 | |
assert Subs(A[i], A[i], x).diff(y) == 0 | |
assert Subs(A[i], A[i], A[j]).diff(A[k]) == KroneckerDelta(j, k) | |
assert Subs(x, x, A[i]).diff(A[j]) == KroneckerDelta(i, j) | |
assert Subs(f(A[i]), A[i], x).diff(A[j]) == 0 | |
assert Subs(f(A[i]), A[i], A[k]).diff(A[j]) == Derivative(f(A[k]), A[k])*KroneckerDelta(j, k) | |
assert Subs(x, x, A[i]**2).diff(A[j]) == 2*KroneckerDelta(i, j)*A[i] | |
assert Subs(A[i], A[i], A[j]**2).diff(A[k]) == 2*KroneckerDelta(j, k)*A[j] | |
assert Subs(A[i]*x, x, A[i]).diff(A[i]) == 2*A[i] | |
assert Subs(A[i]*x, x, A[i]).diff(A[j]) == 2*A[i]*KroneckerDelta(i, j) | |
assert Subs(A[i]*x, x, A[j]).diff(A[i]) == A[j] + A[i]*KroneckerDelta(i, j) | |
assert Subs(A[i]*x, x, A[j]).diff(A[j]) == A[i] + A[j]*KroneckerDelta(i, j) | |
assert Subs(A[i]*x, x, A[i]).diff(A[k]) == 2*A[i]*KroneckerDelta(i, k) | |
assert Subs(A[i]*x, x, A[j]).diff(A[k]) == KroneckerDelta(i, k)*A[j] + KroneckerDelta(j, k)*A[i] | |
assert Subs(A[i]*x, A[i], x).diff(A[i]) == 0 | |
assert Subs(A[i]*x, A[i], x).diff(A[j]) == 0 | |
assert Subs(A[i]*x, A[j], x).diff(A[i]) == x | |
assert Subs(A[i]*x, A[j], x).diff(A[j]) == x*KroneckerDelta(i, j) | |
assert Subs(A[i]*x, A[i], x).diff(A[k]) == 0 | |
assert Subs(A[i]*x, A[j], x).diff(A[k]) == x*KroneckerDelta(i, k) | |
def test_complicated_derivative_with_Indexed(): | |
x, y = symbols("x,y", cls=IndexedBase) | |
sigma = symbols("sigma") | |
i, j, k = symbols("i,j,k") | |
m0,m1,m2,m3,m4,m5 = symbols("m0:6") | |
f = Function("f") | |
expr = f((x[i] - y[i])**2/sigma) | |
_xi_1 = symbols("xi_1", cls=Dummy) | |
assert expr.diff(x[m0]).dummy_eq( | |
(x[i] - y[i])*KroneckerDelta(i, m0)*\ | |
2*Subs( | |
Derivative(f(_xi_1), _xi_1), | |
(_xi_1,), | |
((x[i] - y[i])**2/sigma,) | |
)/sigma | |
) | |
assert expr.diff(x[m0]).diff(x[m1]).dummy_eq( | |
2*KroneckerDelta(i, m0)*\ | |
KroneckerDelta(i, m1)*Subs( | |
Derivative(f(_xi_1), _xi_1), | |
(_xi_1,), | |
((x[i] - y[i])**2/sigma,) | |
)/sigma + \ | |
4*(x[i] - y[i])**2*KroneckerDelta(i, m0)*KroneckerDelta(i, m1)*\ | |
Subs( | |
Derivative(f(_xi_1), _xi_1, _xi_1), | |
(_xi_1,), | |
((x[i] - y[i])**2/sigma,) | |
)/sigma**2 | |
) | |
def test_IndexedBase_commutative(): | |
t = IndexedBase('t', commutative=False) | |
u = IndexedBase('u', commutative=False) | |
v = IndexedBase('v') | |
assert t[0]*v[0] == v[0]*t[0] | |
assert t[0]*u[0] != u[0]*t[0] | |