Spaces:
Running
Running
from functools import singledispatch | |
from sympy.core.symbol import Dummy | |
from sympy.functions.elementary.exponential import exp | |
from sympy.utilities.lambdify import lambdify | |
from sympy.external import import_module | |
from sympy.stats import DiscreteDistributionHandmade | |
from sympy.stats.crv import SingleContinuousDistribution | |
from sympy.stats.crv_types import ChiSquaredDistribution, ExponentialDistribution, GammaDistribution, \ | |
LogNormalDistribution, NormalDistribution, ParetoDistribution, UniformDistribution, BetaDistribution, \ | |
StudentTDistribution, CauchyDistribution | |
from sympy.stats.drv_types import GeometricDistribution, LogarithmicDistribution, NegativeBinomialDistribution, \ | |
PoissonDistribution, SkellamDistribution, YuleSimonDistribution, ZetaDistribution | |
from sympy.stats.frv import SingleFiniteDistribution | |
scipy = import_module("scipy", import_kwargs={'fromlist':['stats']}) | |
def do_sample_scipy(dist, size, seed): | |
return None | |
# CRV | |
def _(dist: SingleContinuousDistribution, size, seed): | |
# if we don't need to make a handmade pdf, we won't | |
import scipy.stats | |
z = Dummy('z') | |
handmade_pdf = lambdify(z, dist.pdf(z), ['numpy', 'scipy']) | |
class scipy_pdf(scipy.stats.rv_continuous): | |
def _pdf(dist, x): | |
return handmade_pdf(x) | |
scipy_rv = scipy_pdf(a=float(dist.set._inf), | |
b=float(dist.set._sup), name='scipy_pdf') | |
return scipy_rv.rvs(size=size, random_state=seed) | |
def _(dist: ChiSquaredDistribution, size, seed): | |
# same parametrisation | |
return scipy.stats.chi2.rvs(df=float(dist.k), size=size, random_state=seed) | |
def _(dist: ExponentialDistribution, size, seed): | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.expon.html#scipy.stats.expon | |
return scipy.stats.expon.rvs(scale=1 / float(dist.rate), size=size, random_state=seed) | |
def _(dist: GammaDistribution, size, seed): | |
# https://stackoverflow.com/questions/42150965/how-to-plot-gamma-distribution-with-alpha-and-beta-parameters-in-python | |
return scipy.stats.gamma.rvs(a=float(dist.k), scale=float(dist.theta), size=size, random_state=seed) | |
def _(dist: LogNormalDistribution, size, seed): | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html | |
return scipy.stats.lognorm.rvs(scale=float(exp(dist.mean)), s=float(dist.std), size=size, random_state=seed) | |
def _(dist: NormalDistribution, size, seed): | |
return scipy.stats.norm.rvs(loc=float(dist.mean), scale=float(dist.std), size=size, random_state=seed) | |
def _(dist: ParetoDistribution, size, seed): | |
# https://stackoverflow.com/questions/42260519/defining-pareto-distribution-in-python-scipy | |
return scipy.stats.pareto.rvs(b=float(dist.alpha), scale=float(dist.xm), size=size, random_state=seed) | |
def _(dist: StudentTDistribution, size, seed): | |
return scipy.stats.t.rvs(df=float(dist.nu), size=size, random_state=seed) | |
def _(dist: UniformDistribution, size, seed): | |
# https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.uniform.html | |
return scipy.stats.uniform.rvs(loc=float(dist.left), scale=float(dist.right - dist.left), size=size, random_state=seed) | |
def _(dist: BetaDistribution, size, seed): | |
# same parametrisation | |
return scipy.stats.beta.rvs(a=float(dist.alpha), b=float(dist.beta), size=size, random_state=seed) | |
def _(dist: CauchyDistribution, size, seed): | |
return scipy.stats.cauchy.rvs(loc=float(dist.x0), scale=float(dist.gamma), size=size, random_state=seed) | |
# DRV: | |
def _(dist: DiscreteDistributionHandmade, size, seed): | |
from scipy.stats import rv_discrete | |
z = Dummy('z') | |
handmade_pmf = lambdify(z, dist.pdf(z), ['numpy', 'scipy']) | |
class scipy_pmf(rv_discrete): | |
def _pmf(dist, x): | |
return handmade_pmf(x) | |
scipy_rv = scipy_pmf(a=float(dist.set._inf), b=float(dist.set._sup), | |
name='scipy_pmf') | |
return scipy_rv.rvs(size=size, random_state=seed) | |
def _(dist: GeometricDistribution, size, seed): | |
return scipy.stats.geom.rvs(p=float(dist.p), size=size, random_state=seed) | |
def _(dist: LogarithmicDistribution, size, seed): | |
return scipy.stats.logser.rvs(p=float(dist.p), size=size, random_state=seed) | |
def _(dist: NegativeBinomialDistribution, size, seed): | |
return scipy.stats.nbinom.rvs(n=float(dist.r), p=float(dist.p), size=size, random_state=seed) | |
def _(dist: PoissonDistribution, size, seed): | |
return scipy.stats.poisson.rvs(mu=float(dist.lamda), size=size, random_state=seed) | |
def _(dist: SkellamDistribution, size, seed): | |
return scipy.stats.skellam.rvs(mu1=float(dist.mu1), mu2=float(dist.mu2), size=size, random_state=seed) | |
def _(dist: YuleSimonDistribution, size, seed): | |
return scipy.stats.yulesimon.rvs(alpha=float(dist.rho), size=size, random_state=seed) | |
def _(dist: ZetaDistribution, size, seed): | |
return scipy.stats.zipf.rvs(a=float(dist.s), size=size, random_state=seed) | |
# FRV: | |
def _(dist: SingleFiniteDistribution, size, seed): | |
# scipy can handle with custom distributions | |
from scipy.stats import rv_discrete | |
density_ = dist.dict | |
x, y = [], [] | |
for k, v in density_.items(): | |
x.append(int(k)) | |
y.append(float(v)) | |
scipy_rv = rv_discrete(name='scipy_rv', values=(x, y)) | |
return scipy_rv.rvs(size=size, random_state=seed) | |