Spaces:
Running
Running
from sympy.assumptions.ask import (Q, ask) | |
from sympy.core.add import Add | |
from sympy.core.containers import Tuple | |
from sympy.core.function import (Derivative, Function, diff) | |
from sympy.core.mod import Mod | |
from sympy.core.mul import Mul | |
from sympy.core import (GoldenRatio, TribonacciConstant) | |
from sympy.core.numbers import (E, Float, I, Rational, oo, pi) | |
from sympy.core.relational import (Eq, Gt, Lt, Ne) | |
from sympy.core.singleton import S | |
from sympy.core.symbol import (Dummy, Symbol, Wild, symbols) | |
from sympy.core.sympify import sympify | |
from sympy.functions.combinatorial.factorials import binomial | |
from sympy.functions.elementary.complexes import (Abs, arg, conjugate, im, re) | |
from sympy.functions.elementary.exponential import (LambertW, exp, log) | |
from sympy.functions.elementary.hyperbolic import (atanh, cosh, sinh, tanh) | |
from sympy.functions.elementary.integers import floor | |
from sympy.functions.elementary.miscellaneous import (cbrt, root, sqrt) | |
from sympy.functions.elementary.piecewise import Piecewise | |
from sympy.functions.elementary.trigonometric import (acos, asin, atan, atan2, cos, sec, sin, tan) | |
from sympy.functions.special.error_functions import (erf, erfc, erfcinv, erfinv) | |
from sympy.integrals.integrals import Integral | |
from sympy.logic.boolalg import (And, Or) | |
from sympy.matrices.dense import Matrix | |
from sympy.matrices import SparseMatrix | |
from sympy.polys.polytools import Poly | |
from sympy.printing.str import sstr | |
from sympy.simplify.radsimp import denom | |
from sympy.solvers.solvers import (nsolve, solve, solve_linear) | |
from sympy.core.function import nfloat | |
from sympy.solvers import solve_linear_system, solve_linear_system_LU, \ | |
solve_undetermined_coeffs | |
from sympy.solvers.bivariate import _filtered_gens, _solve_lambert, _lambert | |
from sympy.solvers.solvers import _invert, unrad, checksol, posify, _ispow, \ | |
det_quick, det_perm, det_minor, _simple_dens, denoms | |
from sympy.physics.units import cm | |
from sympy.polys.rootoftools import CRootOf | |
from sympy.testing.pytest import slow, XFAIL, SKIP, raises | |
from sympy.core.random import verify_numerically as tn | |
from sympy.abc import a, b, c, d, e, k, h, p, x, y, z, t, q, m, R | |
def NS(e, n=15, **options): | |
return sstr(sympify(e).evalf(n, **options), full_prec=True) | |
def test_swap_back(): | |
f, g = map(Function, 'fg') | |
fx, gx = f(x), g(x) | |
assert solve([fx + y - 2, fx - gx - 5], fx, y, gx) == \ | |
{fx: gx + 5, y: -gx - 3} | |
assert solve(fx + gx*x - 2, [fx, gx], dict=True) == [{fx: 2, gx: 0}] | |
assert solve(fx + gx**2*x - y, [fx, gx], dict=True) == [{fx: y, gx: 0}] | |
assert solve([f(1) - 2, x + 2], dict=True) == [{x: -2, f(1): 2}] | |
def guess_solve_strategy(eq, symbol): | |
try: | |
solve(eq, symbol) | |
return True | |
except (TypeError, NotImplementedError): | |
return False | |
def test_guess_poly(): | |
# polynomial equations | |
assert guess_solve_strategy( S(4), x ) # == GS_POLY | |
assert guess_solve_strategy( x, x ) # == GS_POLY | |
assert guess_solve_strategy( x + a, x ) # == GS_POLY | |
assert guess_solve_strategy( 2*x, x ) # == GS_POLY | |
assert guess_solve_strategy( x + sqrt(2), x) # == GS_POLY | |
assert guess_solve_strategy( x + 2**Rational(1, 4), x) # == GS_POLY | |
assert guess_solve_strategy( x**2 + 1, x ) # == GS_POLY | |
assert guess_solve_strategy( x**2 - 1, x ) # == GS_POLY | |
assert guess_solve_strategy( x*y + y, x ) # == GS_POLY | |
assert guess_solve_strategy( x*exp(y) + y, x) # == GS_POLY | |
assert guess_solve_strategy( | |
(x - y**3)/(y**2*sqrt(1 - y**2)), x) # == GS_POLY | |
def test_guess_poly_cv(): | |
# polynomial equations via a change of variable | |
assert guess_solve_strategy( sqrt(x) + 1, x ) # == GS_POLY_CV_1 | |
assert guess_solve_strategy( | |
x**Rational(1, 3) + sqrt(x) + 1, x ) # == GS_POLY_CV_1 | |
assert guess_solve_strategy( 4*x*(1 - sqrt(x)), x ) # == GS_POLY_CV_1 | |
# polynomial equation multiplying both sides by x**n | |
assert guess_solve_strategy( x + 1/x + y, x ) # == GS_POLY_CV_2 | |
def test_guess_rational_cv(): | |
# rational functions | |
assert guess_solve_strategy( (x + 1)/(x**2 + 2), x) # == GS_RATIONAL | |
assert guess_solve_strategy( | |
(x - y**3)/(y**2*sqrt(1 - y**2)), y) # == GS_RATIONAL_CV_1 | |
# rational functions via the change of variable y -> x**n | |
assert guess_solve_strategy( (sqrt(x) + 1)/(x**Rational(1, 3) + sqrt(x) + 1), x ) \ | |
#== GS_RATIONAL_CV_1 | |
def test_guess_transcendental(): | |
#transcendental functions | |
assert guess_solve_strategy( exp(x) + 1, x ) # == GS_TRANSCENDENTAL | |
assert guess_solve_strategy( 2*cos(x) - y, x ) # == GS_TRANSCENDENTAL | |
assert guess_solve_strategy( | |
exp(x) + exp(-x) - y, x ) # == GS_TRANSCENDENTAL | |
assert guess_solve_strategy(3**x - 10, x) # == GS_TRANSCENDENTAL | |
assert guess_solve_strategy(-3**x + 10, x) # == GS_TRANSCENDENTAL | |
assert guess_solve_strategy(a*x**b - y, x) # == GS_TRANSCENDENTAL | |
def test_solve_args(): | |
# equation container, issue 5113 | |
ans = {x: -3, y: 1} | |
eqs = (x + 5*y - 2, -3*x + 6*y - 15) | |
assert all(solve(container(eqs), x, y) == ans for container in | |
(tuple, list, set, frozenset)) | |
assert solve(Tuple(*eqs), x, y) == ans | |
# implicit symbol to solve for | |
assert set(solve(x**2 - 4)) == {S(2), -S(2)} | |
assert solve([x + y - 3, x - y - 5]) == {x: 4, y: -1} | |
assert solve(x - exp(x), x, implicit=True) == [exp(x)] | |
# no symbol to solve for | |
assert solve(42) == solve(42, x) == [] | |
assert solve([1, 2]) == [] | |
assert solve([sqrt(2)],[x]) == [] | |
# duplicate symbols raises | |
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x)) | |
raises(ValueError, lambda: solve(x, x, x)) | |
# no error in exclude | |
assert solve(x, x, exclude=[y, y]) == [0] | |
# duplicate symbols raises | |
raises(ValueError, lambda: solve((x - 3, y + 2), x, y, x)) | |
raises(ValueError, lambda: solve(x, x, x)) | |
# no error in exclude | |
assert solve(x, x, exclude=[y, y]) == [0] | |
# unordered symbols | |
# only 1 | |
assert solve(y - 3, {y}) == [3] | |
# more than 1 | |
assert solve(y - 3, {x, y}) == [{y: 3}] | |
# multiple symbols: take the first linear solution+ | |
# - return as tuple with values for all requested symbols | |
assert solve(x + y - 3, [x, y]) == [(3 - y, y)] | |
# - unless dict is True | |
assert solve(x + y - 3, [x, y], dict=True) == [{x: 3 - y}] | |
# - or no symbols are given | |
assert solve(x + y - 3) == [{x: 3 - y}] | |
# multiple symbols might represent an undetermined coefficients system | |
assert solve(a + b*x - 2, [a, b]) == {a: 2, b: 0} | |
assert solve((a + b)*x + b - c, [a, b]) == {a: -c, b: c} | |
eq = a*x**2 + b*x + c - ((x - h)**2 + 4*p*k)/4/p | |
# - check that flags are obeyed | |
sol = solve(eq, [h, p, k], exclude=[a, b, c]) | |
assert sol == {h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)} | |
assert solve(eq, [h, p, k], dict=True) == [sol] | |
assert solve(eq, [h, p, k], set=True) == \ | |
([h, p, k], {(-b/(2*a), 1/(4*a), (4*a*c - b**2)/(4*a))}) | |
# issue 23889 - polysys not simplified | |
assert solve(eq, [h, p, k], exclude=[a, b, c], simplify=False) == \ | |
{h: -b/(2*a), k: (4*a*c - b**2)/(4*a), p: 1/(4*a)} | |
# but this only happens when system has a single solution | |
args = (a + b)*x - b**2 + 2, a, b | |
assert solve(*args) == [((b**2 - b*x - 2)/x, b)] | |
# and if the system has a solution; the following doesn't so | |
# an algebraic solution is returned | |
assert solve(a*x + b**2/(x + 4) - 3*x - 4/x, a, b, dict=True) == \ | |
[{a: (-b**2*x + 3*x**3 + 12*x**2 + 4*x + 16)/(x**2*(x + 4))}] | |
# failed single equation | |
assert solve(1/(1/x - y + exp(y))) == [] | |
raises( | |
NotImplementedError, lambda: solve(exp(x) + sin(x) + exp(y) + sin(y))) | |
# failed system | |
# -- when no symbols given, 1 fails | |
assert solve([y, exp(x) + x]) == [{x: -LambertW(1), y: 0}] | |
# both fail | |
assert solve( | |
(exp(x) - x, exp(y) - y)) == [{x: -LambertW(-1), y: -LambertW(-1)}] | |
# -- when symbols given | |
assert solve([y, exp(x) + x], x, y) == [(-LambertW(1), 0)] | |
# symbol is a number | |
assert solve(x**2 - pi, pi) == [x**2] | |
# no equations | |
assert solve([], [x]) == [] | |
# nonlinear system | |
assert solve((x**2 - 4, y - 2), x, y) == [(-2, 2), (2, 2)] | |
assert solve((x**2 - 4, y - 2), y, x) == [(2, -2), (2, 2)] | |
assert solve((x**2 - 4 + z, y - 2 - z), a, z, y, x, set=True | |
) == ([a, z, y, x], { | |
(a, z, z + 2, -sqrt(4 - z)), | |
(a, z, z + 2, sqrt(4 - z))}) | |
# overdetermined system | |
# - nonlinear | |
assert solve([(x + y)**2 - 4, x + y - 2]) == [{x: -y + 2}] | |
# - linear | |
assert solve((x + y - 2, 2*x + 2*y - 4)) == {x: -y + 2} | |
# When one or more args are Boolean | |
assert solve(Eq(x**2, 0.0)) == [0.0] # issue 19048 | |
assert solve([True, Eq(x, 0)], [x], dict=True) == [{x: 0}] | |
assert solve([Eq(x, x), Eq(x, 0), Eq(x, x+1)], [x], dict=True) == [] | |
assert not solve([Eq(x, x+1), x < 2], x) | |
assert solve([Eq(x, 0), x+1<2]) == Eq(x, 0) | |
assert solve([Eq(x, x), Eq(x, x+1)], x) == [] | |
assert solve(True, x) == [] | |
assert solve([x - 1, False], [x], set=True) == ([], set()) | |
assert solve([-y*(x + y - 1)/2, (y - 1)/x/y + 1/y], | |
set=True, check=False) == ([x, y], {(1 - y, y), (x, 0)}) | |
# ordering should be canonical, fastest to order by keys instead | |
# of by size | |
assert list(solve((y - 1, x - sqrt(3)*z)).keys()) == [x, y] | |
# as set always returns as symbols, set even if no solution | |
assert solve([x - 1, x], (y, x), set=True) == ([y, x], set()) | |
assert solve([x - 1, x], {y, x}, set=True) == ([x, y], set()) | |
def test_solve_polynomial1(): | |
assert solve(3*x - 2, x) == [Rational(2, 3)] | |
assert solve(Eq(3*x, 2), x) == [Rational(2, 3)] | |
assert set(solve(x**2 - 1, x)) == {-S.One, S.One} | |
assert set(solve(Eq(x**2, 1), x)) == {-S.One, S.One} | |
assert solve(x - y**3, x) == [y**3] | |
rx = root(x, 3) | |
assert solve(x - y**3, y) == [ | |
rx, -rx/2 - sqrt(3)*I*rx/2, -rx/2 + sqrt(3)*I*rx/2] | |
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') | |
assert solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) == \ | |
{ | |
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), | |
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), | |
} | |
solution = {x: S.Zero, y: S.Zero} | |
assert solve((x - y, x + y), x, y ) == solution | |
assert solve((x - y, x + y), (x, y)) == solution | |
assert solve((x - y, x + y), [x, y]) == solution | |
assert set(solve(x**3 - 15*x - 4, x)) == { | |
-2 + 3**S.Half, | |
S(4), | |
-2 - 3**S.Half | |
} | |
assert set(solve((x**2 - 1)**2 - a, x)) == \ | |
{sqrt(1 + sqrt(a)), -sqrt(1 + sqrt(a)), | |
sqrt(1 - sqrt(a)), -sqrt(1 - sqrt(a))} | |
def test_solve_polynomial2(): | |
assert solve(4, x) == [] | |
def test_solve_polynomial_cv_1a(): | |
""" | |
Test for solving on equations that can be converted to a polynomial equation | |
using the change of variable y -> x**Rational(p, q) | |
""" | |
assert solve( sqrt(x) - 1, x) == [1] | |
assert solve( sqrt(x) - 2, x) == [4] | |
assert solve( x**Rational(1, 4) - 2, x) == [16] | |
assert solve( x**Rational(1, 3) - 3, x) == [27] | |
assert solve(sqrt(x) + x**Rational(1, 3) + x**Rational(1, 4), x) == [0] | |
def test_solve_polynomial_cv_1b(): | |
assert set(solve(4*x*(1 - a*sqrt(x)), x)) == {S.Zero, 1/a**2} | |
assert set(solve(x*(root(x, 3) - 3), x)) == {S.Zero, S(27)} | |
def test_solve_polynomial_cv_2(): | |
""" | |
Test for solving on equations that can be converted to a polynomial equation | |
multiplying both sides of the equation by x**m | |
""" | |
assert solve(x + 1/x - 1, x) in \ | |
[[ S.Half + I*sqrt(3)/2, S.Half - I*sqrt(3)/2], | |
[ S.Half - I*sqrt(3)/2, S.Half + I*sqrt(3)/2]] | |
def test_quintics_1(): | |
f = x**5 - 110*x**3 - 55*x**2 + 2310*x + 979 | |
s = solve(f, check=False) | |
for r in s: | |
res = f.subs(x, r.n()).n() | |
assert tn(res, 0) | |
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 | |
s = solve(f) | |
for r in s: | |
assert r.func == CRootOf | |
# if one uses solve to get the roots of a polynomial that has a CRootOf | |
# solution, make sure that the use of nfloat during the solve process | |
# doesn't fail. Note: if you want numerical solutions to a polynomial | |
# it is *much* faster to use nroots to get them than to solve the | |
# equation only to get RootOf solutions which are then numerically | |
# evaluated. So for eq = x**5 + 3*x + 7 do Poly(eq).nroots() rather | |
# than [i.n() for i in solve(eq)] to get the numerical roots of eq. | |
assert nfloat(solve(x**5 + 3*x**3 + 7)[0], exponent=False) == \ | |
CRootOf(x**5 + 3*x**3 + 7, 0).n() | |
def test_quintics_2(): | |
f = x**5 + 15*x + 12 | |
s = solve(f, check=False) | |
for r in s: | |
res = f.subs(x, r.n()).n() | |
assert tn(res, 0) | |
f = x**5 - 15*x**3 - 5*x**2 + 10*x + 20 | |
s = solve(f) | |
for r in s: | |
assert r.func == CRootOf | |
assert solve(x**5 - 6*x**3 - 6*x**2 + x - 6) == [ | |
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 0), | |
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 1), | |
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 2), | |
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 3), | |
CRootOf(x**5 - 6*x**3 - 6*x**2 + x - 6, 4)] | |
def test_quintics_3(): | |
y = x**5 + x**3 - 2**Rational(1, 3) | |
assert solve(y) == solve(-y) == [] | |
def test_highorder_poly(): | |
# just testing that the uniq generator is unpacked | |
sol = solve(x**6 - 2*x + 2) | |
assert all(isinstance(i, CRootOf) for i in sol) and len(sol) == 6 | |
def test_solve_rational(): | |
"""Test solve for rational functions""" | |
assert solve( ( x - y**3 )/( (y**2)*sqrt(1 - y**2) ), x) == [y**3] | |
def test_solve_conjugate(): | |
"""Test solve for simple conjugate functions""" | |
assert solve(conjugate(x) -3 + I) == [3 + I] | |
def test_solve_nonlinear(): | |
assert solve(x**2 - y**2, x, y, dict=True) == [{x: -y}, {x: y}] | |
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: -x*sqrt(exp(x))}, | |
{y: x*sqrt(exp(x))}] | |
def test_issue_8666(): | |
x = symbols('x') | |
assert solve(Eq(x**2 - 1/(x**2 - 4), 4 - 1/(x**2 - 4)), x) == [] | |
assert solve(Eq(x + 1/x, 1/x), x) == [] | |
def test_issue_7228(): | |
assert solve(4**(2*(x**2) + 2*x) - 8, x) == [Rational(-3, 2), S.Half] | |
def test_issue_7190(): | |
assert solve(log(x-3) + log(x+3), x) == [sqrt(10)] | |
def test_issue_21004(): | |
x = symbols('x') | |
f = x/sqrt(x**2+1) | |
f_diff = f.diff(x) | |
assert solve(f_diff, x) == [] | |
def test_issue_24650(): | |
x = symbols('x') | |
r = solve(Eq(Piecewise((x, Eq(x, 0) | (x > 1))), 0)) | |
assert r == [0] | |
r = checksol(Eq(Piecewise((x, Eq(x, 0) | (x > 1))), 0), x, sol=0) | |
assert r is True | |
def test_linear_system(): | |
x, y, z, t, n = symbols('x, y, z, t, n') | |
assert solve([x - 1, x - y, x - 2*y, y - 1], [x, y]) == [] | |
assert solve([x - 1, x - y, x - 2*y, x - 1], [x, y]) == [] | |
assert solve([x - 1, x - 1, x - y, x - 2*y], [x, y]) == [] | |
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == {x: -3, y: 1} | |
M = Matrix([[0, 0, n*(n + 1), (n + 1)**2, 0], | |
[n + 1, n + 1, -2*n - 1, -(n + 1), 0], | |
[-1, 0, 1, 0, 0]]) | |
assert solve_linear_system(M, x, y, z, t) == \ | |
{x: t*(-n-1)/n, y: 0, z: t*(-n-1)/n} | |
assert solve([x + y + z + t, -z - t], x, y, z, t) == {x: -y, z: -t} | |
def test_linear_system_xfail(): | |
# https://github.com/sympy/sympy/issues/6420 | |
M = Matrix([[0, 15.0, 10.0, 700.0], | |
[1, 1, 1, 100.0], | |
[0, 10.0, 5.0, 200.0], | |
[-5.0, 0, 0, 0 ]]) | |
assert solve_linear_system(M, x, y, z) == {x: 0, y: -60.0, z: 160.0} | |
def test_linear_system_function(): | |
a = Function('a') | |
assert solve([a(0, 0) + a(0, 1) + a(1, 0) + a(1, 1), -a(1, 0) - a(1, 1)], | |
a(0, 0), a(0, 1), a(1, 0), a(1, 1)) == {a(1, 0): -a(1, 1), a(0, 0): -a(0, 1)} | |
def test_linear_system_symbols_doesnt_hang_1(): | |
def _mk_eqs(wy): | |
# Equations for fitting a wy*2 - 1 degree polynomial between two points, | |
# at end points derivatives are known up to order: wy - 1 | |
order = 2*wy - 1 | |
x, x0, x1 = symbols('x, x0, x1', real=True) | |
y0s = symbols('y0_:{}'.format(wy), real=True) | |
y1s = symbols('y1_:{}'.format(wy), real=True) | |
c = symbols('c_:{}'.format(order+1), real=True) | |
expr = sum(coeff*x**o for o, coeff in enumerate(c)) | |
eqs = [] | |
for i in range(wy): | |
eqs.append(expr.diff(x, i).subs({x: x0}) - y0s[i]) | |
eqs.append(expr.diff(x, i).subs({x: x1}) - y1s[i]) | |
return eqs, c | |
# | |
# The purpose of this test is just to see that these calls don't hang. The | |
# expressions returned are complicated so are not included here. Testing | |
# their correctness takes longer than solving the system. | |
# | |
for n in range(1, 7+1): | |
eqs, c = _mk_eqs(n) | |
solve(eqs, c) | |
def test_linear_system_symbols_doesnt_hang_2(): | |
M = Matrix([ | |
[66, 24, 39, 50, 88, 40, 37, 96, 16, 65, 31, 11, 37, 72, 16, 19, 55, 37, 28, 76], | |
[10, 93, 34, 98, 59, 44, 67, 74, 74, 94, 71, 61, 60, 23, 6, 2, 57, 8, 29, 78], | |
[19, 91, 57, 13, 64, 65, 24, 53, 77, 34, 85, 58, 87, 39, 39, 7, 36, 67, 91, 3], | |
[74, 70, 15, 53, 68, 43, 86, 83, 81, 72, 25, 46, 67, 17, 59, 25, 78, 39, 63, 6], | |
[69, 40, 67, 21, 67, 40, 17, 13, 93, 44, 46, 89, 62, 31, 30, 38, 18, 20, 12, 81], | |
[50, 22, 74, 76, 34, 45, 19, 76, 28, 28, 11, 99, 97, 82, 8, 46, 99, 57, 68, 35], | |
[58, 18, 45, 88, 10, 64, 9, 34, 90, 82, 17, 41, 43, 81, 45, 83, 22, 88, 24, 39], | |
[42, 21, 70, 68, 6, 33, 64, 81, 83, 15, 86, 75, 86, 17, 77, 34, 62, 72, 20, 24], | |
[ 7, 8, 2, 72, 71, 52, 96, 5, 32, 51, 31, 36, 79, 88, 25, 77, 29, 26, 33, 13], | |
[19, 31, 30, 85, 81, 39, 63, 28, 19, 12, 16, 49, 37, 66, 38, 13, 3, 71, 61, 51], | |
[29, 82, 80, 49, 26, 85, 1, 37, 2, 74, 54, 82, 26, 47, 54, 9, 35, 0, 99, 40], | |
[15, 49, 82, 91, 93, 57, 45, 25, 45, 97, 15, 98, 48, 52, 66, 24, 62, 54, 97, 37], | |
[62, 23, 73, 53, 52, 86, 28, 38, 0, 74, 92, 38, 97, 70, 71, 29, 26, 90, 67, 45], | |
[ 2, 32, 23, 24, 71, 37, 25, 71, 5, 41, 97, 65, 93, 13, 65, 45, 25, 88, 69, 50], | |
[40, 56, 1, 29, 79, 98, 79, 62, 37, 28, 45, 47, 3, 1, 32, 74, 98, 35, 84, 32], | |
[33, 15, 87, 79, 65, 9, 14, 63, 24, 19, 46, 28, 74, 20, 29, 96, 84, 91, 93, 1], | |
[97, 18, 12, 52, 1, 2, 50, 14, 52, 76, 19, 82, 41, 73, 51, 79, 13, 3, 82, 96], | |
[40, 28, 52, 10, 10, 71, 56, 78, 82, 5, 29, 48, 1, 26, 16, 18, 50, 76, 86, 52], | |
[38, 89, 83, 43, 29, 52, 90, 77, 57, 0, 67, 20, 81, 88, 48, 96, 88, 58, 14, 3]]) | |
syms = x0,x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18 = symbols('x:19') | |
sol = { | |
x0: -S(1967374186044955317099186851240896179)/3166636564687820453598895768302256588, | |
x1: -S(84268280268757263347292368432053826)/791659141171955113399723942075564147, | |
x2: -S(229962957341664730974463872411844965)/1583318282343910226799447884151128294, | |
x3: S(990156781744251750886760432229180537)/6333273129375640907197791536604513176, | |
x4: -S(2169830351210066092046760299593096265)/18999819388126922721593374609813539528, | |
x5: S(4680868883477577389628494526618745355)/9499909694063461360796687304906769764, | |
x6: -S(1590820774344371990683178396480879213)/3166636564687820453598895768302256588, | |
x7: -S(54104723404825537735226491634383072)/339282489073695048599881689460956063, | |
x8: S(3182076494196560075964847771774733847)/6333273129375640907197791536604513176, | |
x9: -S(10870817431029210431989147852497539675)/18999819388126922721593374609813539528, | |
x10: -S(13118019242576506476316318268573312603)/18999819388126922721593374609813539528, | |
x11: -S(5173852969886775824855781403820641259)/4749954847031730680398343652453384882, | |
x12: S(4261112042731942783763341580651820563)/4749954847031730680398343652453384882, | |
x13: -S(821833082694661608993818117038209051)/6333273129375640907197791536604513176, | |
x14: S(906881575107250690508618713632090559)/904753304196520129599684505229216168, | |
x15: -S(732162528717458388995329317371283987)/6333273129375640907197791536604513176, | |
x16: S(4524215476705983545537087360959896817)/9499909694063461360796687304906769764, | |
x17: -S(3898571347562055611881270844646055217)/6333273129375640907197791536604513176, | |
x18: S(7513502486176995632751685137907442269)/18999819388126922721593374609813539528 | |
} | |
eqs = list(M * Matrix(syms + (1,))) | |
assert solve(eqs, syms) == sol | |
y = Symbol('y') | |
eqs = list(y * M * Matrix(syms + (1,))) | |
assert solve(eqs, syms) == sol | |
def test_linear_systemLU(): | |
n = Symbol('n') | |
M = Matrix([[1, 2, 0, 1], [1, 3, 2*n, 1], [4, -1, n**2, 1]]) | |
assert solve_linear_system_LU(M, [x, y, z]) == {z: -3/(n**2 + 18*n), | |
x: 1 - 12*n/(n**2 + 18*n), | |
y: 6*n/(n**2 + 18*n)} | |
# Note: multiple solutions exist for some of these equations, so the tests | |
# should be expected to break if the implementation of the solver changes | |
# in such a way that a different branch is chosen | |
def test_solve_transcendental(): | |
from sympy.abc import a, b | |
assert solve(exp(x) - 3, x) == [log(3)] | |
assert set(solve((a*x + b)*(exp(x) - 3), x)) == {-b/a, log(3)} | |
assert solve(cos(x) - y, x) == [-acos(y) + 2*pi, acos(y)] | |
assert solve(2*cos(x) - y, x) == [-acos(y/2) + 2*pi, acos(y/2)] | |
assert solve(Eq(cos(x), sin(x)), x) == [pi/4] | |
assert set(solve(exp(x) + exp(-x) - y, x)) in [{ | |
log(y/2 - sqrt(y**2 - 4)/2), | |
log(y/2 + sqrt(y**2 - 4)/2), | |
}, { | |
log(y - sqrt(y**2 - 4)) - log(2), | |
log(y + sqrt(y**2 - 4)) - log(2)}, | |
{ | |
log(y/2 - sqrt((y - 2)*(y + 2))/2), | |
log(y/2 + sqrt((y - 2)*(y + 2))/2)}] | |
assert solve(exp(x) - 3, x) == [log(3)] | |
assert solve(Eq(exp(x), 3), x) == [log(3)] | |
assert solve(log(x) - 3, x) == [exp(3)] | |
assert solve(sqrt(3*x) - 4, x) == [Rational(16, 3)] | |
assert solve(3**(x + 2), x) == [] | |
assert solve(3**(2 - x), x) == [] | |
assert solve(x + 2**x, x) == [-LambertW(log(2))/log(2)] | |
assert solve(2*x + 5 + log(3*x - 2), x) == \ | |
[Rational(2, 3) + LambertW(2*exp(Rational(-19, 3))/3)/2] | |
assert solve(3*x + log(4*x), x) == [LambertW(Rational(3, 4))/3] | |
assert set(solve((2*x + 8)*(8 + exp(x)), x)) == {S(-4), log(8) + pi*I} | |
eq = 2*exp(3*x + 4) - 3 | |
ans = solve(eq, x) # this generated a failure in flatten | |
assert len(ans) == 3 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) | |
assert solve(2*log(3*x + 4) - 3, x) == [(exp(Rational(3, 2)) - 4)/3] | |
assert solve(exp(x) + 1, x) == [pi*I] | |
eq = 2*(3*x + 4)**5 - 6*7**(3*x + 9) | |
result = solve(eq, x) | |
x0 = -log(2401) | |
x1 = 3**Rational(1, 5) | |
x2 = log(7**(7*x1/20)) | |
x3 = sqrt(2) | |
x4 = sqrt(5) | |
x5 = x3*sqrt(x4 - 5) | |
x6 = x4 + 1 | |
x7 = 1/(3*log(7)) | |
x8 = -x4 | |
x9 = x3*sqrt(x8 - 5) | |
x10 = x8 + 1 | |
ans = [x7*(x0 - 5*LambertW(x2*(-x5 + x6))), | |
x7*(x0 - 5*LambertW(x2*(x5 + x6))), | |
x7*(x0 - 5*LambertW(x2*(x10 - x9))), | |
x7*(x0 - 5*LambertW(x2*(x10 + x9))), | |
x7*(x0 - 5*LambertW(-log(7**(7*x1/5))))] | |
assert result == ans, result | |
# it works if expanded, too | |
assert solve(eq.expand(), x) == result | |
assert solve(z*cos(x) - y, x) == [-acos(y/z) + 2*pi, acos(y/z)] | |
assert solve(z*cos(2*x) - y, x) == [-acos(y/z)/2 + pi, acos(y/z)/2] | |
assert solve(z*cos(sin(x)) - y, x) == [ | |
pi - asin(acos(y/z)), asin(acos(y/z) - 2*pi) + pi, | |
-asin(acos(y/z) - 2*pi), asin(acos(y/z))] | |
assert solve(z*cos(x), x) == [pi/2, pi*Rational(3, 2)] | |
# issue 4508 | |
assert solve(y - b*x/(a + x), x) in [[-a*y/(y - b)], [a*y/(b - y)]] | |
assert solve(y - b*exp(a/x), x) == [a/log(y/b)] | |
# issue 4507 | |
assert solve(y - b/(1 + a*x), x) in [[(b - y)/(a*y)], [-((y - b)/(a*y))]] | |
# issue 4506 | |
assert solve(y - a*x**b, x) == [(y/a)**(1/b)] | |
# issue 4505 | |
assert solve(z**x - y, x) == [log(y)/log(z)] | |
# issue 4504 | |
assert solve(2**x - 10, x) == [1 + log(5)/log(2)] | |
# issue 6744 | |
assert solve(x*y) == [{x: 0}, {y: 0}] | |
assert solve([x*y]) == [{x: 0}, {y: 0}] | |
assert solve(x**y - 1) == [{x: 1}, {y: 0}] | |
assert solve([x**y - 1]) == [{x: 1}, {y: 0}] | |
assert solve(x*y*(x**2 - y**2)) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] | |
assert solve([x*y*(x**2 - y**2)]) == [{x: 0}, {x: -y}, {x: y}, {y: 0}] | |
# issue 4739 | |
assert solve(exp(log(5)*x) - 2**x, x) == [0] | |
# issue 14791 | |
assert solve(exp(log(5)*x) - exp(log(2)*x), x) == [0] | |
f = Function('f') | |
assert solve(y*f(log(5)*x) - y*f(log(2)*x), x) == [0] | |
assert solve(f(x) - f(0), x) == [0] | |
assert solve(f(x) - f(2 - x), x) == [1] | |
raises(NotImplementedError, lambda: solve(f(x, y) - f(1, 2), x)) | |
raises(NotImplementedError, lambda: solve(f(x, y) - f(2 - x, 2), x)) | |
raises(ValueError, lambda: solve(f(x, y) - f(1 - x), x)) | |
raises(ValueError, lambda: solve(f(x, y) - f(1), x)) | |
# misc | |
# make sure that the right variables is picked up in tsolve | |
# shouldn't generate a GeneratorsNeeded error in _tsolve when the NaN is generated | |
# for eq_down. Actual answers, as determined numerically are approx. +/- 0.83 | |
raises(NotImplementedError, lambda: | |
solve(sinh(x)*sinh(sinh(x)) + cosh(x)*cosh(sinh(x)) - 3)) | |
# watch out for recursive loop in tsolve | |
raises(NotImplementedError, lambda: solve((x + 2)**y*x - 3, x)) | |
# issue 7245 | |
assert solve(sin(sqrt(x))) == [0, pi**2] | |
# issue 7602 | |
a, b = symbols('a, b', real=True, negative=False) | |
assert str(solve(Eq(a, 0.5 - cos(pi*b)/2), b)) == \ | |
'[2.0 - 0.318309886183791*acos(1.0 - 2.0*a), 0.318309886183791*acos(1.0 - 2.0*a)]' | |
# issue 15325 | |
assert solve(y**(1/x) - z, x) == [log(y)/log(z)] | |
# issue 25685 (basic trig identies should give simple solutions) | |
for yi in [cos(2*x),sin(2*x),cos(x - pi/3)]: | |
sol = solve([cos(x) - S(3)/5, yi - y]) | |
assert (sol[0][y] + sol[1][y]).is_Rational, (yi,sol) | |
# don't allow massive expansion | |
assert solve(cos(1000*x) - S.Half) == [pi/3000, pi/600] | |
assert solve(cos(x - 1000*y) - 1, x) == [1000*y, 1000*y + 2*pi] | |
assert solve(cos(x + y + z) - 1, x) == [-y - z, -y - z + 2*pi] | |
# issue 26008 | |
assert solve(sin(x + pi/6)) == [-pi/6, 5*pi/6] | |
def test_solve_for_functions_derivatives(): | |
t = Symbol('t') | |
x = Function('x')(t) | |
y = Function('y')(t) | |
a11, a12, a21, a22, b1, b2 = symbols('a11,a12,a21,a22,b1,b2') | |
soln = solve([a11*x + a12*y - b1, a21*x + a22*y - b2], x, y) | |
assert soln == { | |
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21), | |
y: (a11*b2 - a21*b1)/(a11*a22 - a12*a21), | |
} | |
assert solve(x - 1, x) == [1] | |
assert solve(3*x - 2, x) == [Rational(2, 3)] | |
soln = solve([a11*x.diff(t) + a12*y.diff(t) - b1, a21*x.diff(t) + | |
a22*y.diff(t) - b2], x.diff(t), y.diff(t)) | |
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), | |
x.diff(t): (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } | |
assert solve(x.diff(t) - 1, x.diff(t)) == [1] | |
assert solve(3*x.diff(t) - 2, x.diff(t)) == [Rational(2, 3)] | |
eqns = {3*x - 1, 2*y - 4} | |
assert solve(eqns, {x, y}) == { x: Rational(1, 3), y: 2 } | |
x = Symbol('x') | |
f = Function('f') | |
F = x**2 + f(x)**2 - 4*x - 1 | |
assert solve(F.diff(x), diff(f(x), x)) == [(-x + 2)/f(x)] | |
# Mixed cased with a Symbol and a Function | |
x = Symbol('x') | |
y = Function('y')(t) | |
soln = solve([a11*x + a12*y.diff(t) - b1, a21*x + | |
a22*y.diff(t) - b2], x, y.diff(t)) | |
assert soln == { y.diff(t): (a11*b2 - a21*b1)/(a11*a22 - a12*a21), | |
x: (a22*b1 - a12*b2)/(a11*a22 - a12*a21) } | |
# issue 13263 | |
x = Symbol('x') | |
f = Function('f') | |
soln = solve([f(x).diff(x) + f(x).diff(x, 2) - 1, f(x).diff(x) - f(x).diff(x, 2)], | |
f(x).diff(x), f(x).diff(x, 2)) | |
assert soln == { f(x).diff(x, 2): S(1)/2, f(x).diff(x): S(1)/2 } | |
soln = solve([f(x).diff(x, 2) + f(x).diff(x, 3) - 1, 1 - f(x).diff(x, 2) - | |
f(x).diff(x, 3), 1 - f(x).diff(x,3)], f(x).diff(x, 2), f(x).diff(x, 3)) | |
assert soln == { f(x).diff(x, 2): 0, f(x).diff(x, 3): 1 } | |
def test_issue_3725(): | |
f = Function('f') | |
F = x**2 + f(x)**2 - 4*x - 1 | |
e = F.diff(x) | |
assert solve(e, f(x).diff(x)) in [[(2 - x)/f(x)], [-((x - 2)/f(x))]] | |
def test_issue_3870(): | |
a, b, c, d = symbols('a b c d') | |
A = Matrix(2, 2, [a, b, c, d]) | |
B = Matrix(2, 2, [0, 2, -3, 0]) | |
C = Matrix(2, 2, [1, 2, 3, 4]) | |
assert solve(A*B - C, [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} | |
assert solve([A*B - C], [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} | |
assert solve(Eq(A*B, C), [a, b, c, d]) == {a: 1, b: Rational(-1, 3), c: 2, d: -1} | |
assert solve([A*B - B*A], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} | |
assert solve([A*C - C*A], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} | |
assert solve([A*B - B*A, A*C - C*A], [a, b, c, d]) == {a: d, b: 0, c: 0} | |
assert solve([Eq(A*B, B*A)], [a, b, c, d]) == {a: d, b: Rational(-2, 3)*c} | |
assert solve([Eq(A*C, C*A)], [a, b, c, d]) == {a: d - c, b: Rational(2, 3)*c} | |
assert solve([Eq(A*B, B*A), Eq(A*C, C*A)], [a, b, c, d]) == {a: d, b: 0, c: 0} | |
def test_solve_linear(): | |
w = Wild('w') | |
assert solve_linear(x, x) == (0, 1) | |
assert solve_linear(x, exclude=[x]) == (0, 1) | |
assert solve_linear(x, symbols=[w]) == (0, 1) | |
assert solve_linear(x, y - 2*x) in [(x, y/3), (y, 3*x)] | |
assert solve_linear(x, y - 2*x, exclude=[x]) == (y, 3*x) | |
assert solve_linear(3*x - y, 0) in [(x, y/3), (y, 3*x)] | |
assert solve_linear(3*x - y, 0, [x]) == (x, y/3) | |
assert solve_linear(3*x - y, 0, [y]) == (y, 3*x) | |
assert solve_linear(x**2/y, 1) == (y, x**2) | |
assert solve_linear(w, x) in [(w, x), (x, w)] | |
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y) == \ | |
(y, -2 - cos(x)**2 - sin(x)**2) | |
assert solve_linear(cos(x)**2 + sin(x)**2 + 2 + y, symbols=[x]) == (0, 1) | |
assert solve_linear(Eq(x, 3)) == (x, 3) | |
assert solve_linear(1/(1/x - 2)) == (0, 0) | |
assert solve_linear((x + 1)*exp(-x), symbols=[x]) == (x, -1) | |
assert solve_linear((x + 1)*exp(x), symbols=[x]) == ((x + 1)*exp(x), 1) | |
assert solve_linear(x*exp(-x**2), symbols=[x]) == (x, 0) | |
assert solve_linear(0**x - 1) == (0**x - 1, 1) | |
assert solve_linear(1 + 1/(x - 1)) == (x, 0) | |
eq = y*cos(x)**2 + y*sin(x)**2 - y # = y*(1 - 1) = 0 | |
assert solve_linear(eq) == (0, 1) | |
eq = cos(x)**2 + sin(x)**2 # = 1 | |
assert solve_linear(eq) == (0, 1) | |
raises(ValueError, lambda: solve_linear(Eq(x, 3), 3)) | |
def test_solve_undetermined_coeffs(): | |
assert solve_undetermined_coeffs( | |
a*x**2 + b*x**2 + b*x + 2*c*x + c + 1, [a, b, c], x | |
) == {a: -2, b: 2, c: -1} | |
# Test that rational functions work | |
assert solve_undetermined_coeffs(a/x + b/(x + 1) | |
- (2*x + 1)/(x**2 + x), [a, b], x) == {a: 1, b: 1} | |
# Test cancellation in rational functions | |
assert solve_undetermined_coeffs( | |
((c + 1)*a*x**2 + (c + 1)*b*x**2 + | |
(c + 1)*b*x + (c + 1)*2*c*x + (c + 1)**2)/(c + 1), | |
[a, b, c], x) == \ | |
{a: -2, b: 2, c: -1} | |
# multivariate | |
X, Y, Z = y, x**y, y*x**y | |
eq = a*X + b*Y + c*Z - X - 2*Y - 3*Z | |
coeffs = a, b, c | |
syms = x, y | |
assert solve_undetermined_coeffs(eq, coeffs) == { | |
a: 1, b: 2, c: 3} | |
assert solve_undetermined_coeffs(eq, coeffs, syms) == { | |
a: 1, b: 2, c: 3} | |
assert solve_undetermined_coeffs(eq, coeffs, *syms) == { | |
a: 1, b: 2, c: 3} | |
# check output format | |
assert solve_undetermined_coeffs(a*x + a - 2, [a]) == [] | |
assert solve_undetermined_coeffs(a**2*x - 4*x, [a]) == [ | |
{a: -2}, {a: 2}] | |
assert solve_undetermined_coeffs(0, [a]) == [] | |
assert solve_undetermined_coeffs(0, [a], dict=True) == [] | |
assert solve_undetermined_coeffs(0, [a], set=True) == ([], {}) | |
assert solve_undetermined_coeffs(1, [a]) == [] | |
abeq = a*x - 2*x + b - 3 | |
s = {b, a} | |
assert solve_undetermined_coeffs(abeq, s, x) == {a: 2, b: 3} | |
assert solve_undetermined_coeffs(abeq, s, x, set=True) == ([a, b], {(2, 3)}) | |
assert solve_undetermined_coeffs(sin(a*x) - sin(2*x), (a,)) is None | |
assert solve_undetermined_coeffs(a*x + b*x - 2*x, (a, b)) == {a: 2 - b} | |
def test_solve_inequalities(): | |
x = Symbol('x') | |
sol = And(S.Zero < x, x < oo) | |
assert solve(x + 1 > 1) == sol | |
assert solve([x + 1 > 1]) == sol | |
assert solve([x + 1 > 1], x) == sol | |
assert solve([x + 1 > 1], [x]) == sol | |
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] | |
assert solve(system) == \ | |
And(Or(And(Lt(-sqrt(2), x), Lt(x, -1)), | |
And(Lt(1, x), Lt(x, sqrt(2)))), Eq(0, 0)) | |
x = Symbol('x', real=True) | |
system = [Lt(x**2 - 2, 0), Gt(x**2 - 1, 0)] | |
assert solve(system) == \ | |
Or(And(Lt(-sqrt(2), x), Lt(x, -1)), And(Lt(1, x), Lt(x, sqrt(2)))) | |
# issues 6627, 3448 | |
assert solve((x - 3)/(x - 2) < 0, x) == And(Lt(2, x), Lt(x, 3)) | |
assert solve(x/(x + 1) > 1, x) == And(Lt(-oo, x), Lt(x, -1)) | |
assert solve(sin(x) > S.Half) == And(pi/6 < x, x < pi*Rational(5, 6)) | |
assert solve(Eq(False, x < 1)) == (S.One <= x) & (x < oo) | |
assert solve(Eq(True, x < 1)) == (-oo < x) & (x < 1) | |
assert solve(Eq(x < 1, False)) == (S.One <= x) & (x < oo) | |
assert solve(Eq(x < 1, True)) == (-oo < x) & (x < 1) | |
assert solve(Eq(False, x)) == False | |
assert solve(Eq(0, x)) == [0] | |
assert solve(Eq(True, x)) == True | |
assert solve(Eq(1, x)) == [1] | |
assert solve(Eq(False, ~x)) == True | |
assert solve(Eq(True, ~x)) == False | |
assert solve(Ne(True, x)) == False | |
assert solve(Ne(1, x)) == (x > -oo) & (x < oo) & Ne(x, 1) | |
def test_issue_4793(): | |
assert solve(1/x) == [] | |
assert solve(x*(1 - 5/x)) == [5] | |
assert solve(x + sqrt(x) - 2) == [1] | |
assert solve(-(1 + x)/(2 + x)**2 + 1/(2 + x)) == [] | |
assert solve(-x**2 - 2*x + (x + 1)**2 - 1) == [] | |
assert solve((x/(x + 1) + 3)**(-2)) == [] | |
assert solve(x/sqrt(x**2 + 1), x) == [0] | |
assert solve(exp(x) - y, x) == [log(y)] | |
assert solve(exp(x)) == [] | |
assert solve(x**2 + x + sin(y)**2 + cos(y)**2 - 1, x) in [[0, -1], [-1, 0]] | |
eq = 4*3**(5*x + 2) - 7 | |
ans = solve(eq, x) | |
assert len(ans) == 5 and all(eq.subs(x, a).n(chop=True) == 0 for a in ans) | |
assert solve(log(x**2) - y**2/exp(x), x, y, set=True) == ( | |
[x, y], | |
{(x, sqrt(exp(x) * log(x ** 2))), (x, -sqrt(exp(x) * log(x ** 2)))}) | |
assert solve(x**2*z**2 - z**2*y**2) == [{x: -y}, {x: y}, {z: 0}] | |
assert solve((x - 1)/(1 + 1/(x - 1))) == [] | |
assert solve(x**(y*z) - x, x) == [1] | |
raises(NotImplementedError, lambda: solve(log(x) - exp(x), x)) | |
raises(NotImplementedError, lambda: solve(2**x - exp(x) - 3)) | |
def test_PR1964(): | |
# issue 5171 | |
assert solve(sqrt(x)) == solve(sqrt(x**3)) == [0] | |
assert solve(sqrt(x - 1)) == [1] | |
# issue 4462 | |
a = Symbol('a') | |
assert solve(-3*a/sqrt(x), x) == [] | |
# issue 4486 | |
assert solve(2*x/(x + 2) - 1, x) == [2] | |
# issue 4496 | |
assert set(solve((x**2/(7 - x)).diff(x))) == {S.Zero, S(14)} | |
# issue 4695 | |
f = Function('f') | |
assert solve((3 - 5*x/f(x))*f(x), f(x)) == [x*Rational(5, 3)] | |
# issue 4497 | |
assert solve(1/root(5 + x, 5) - 9, x) == [Rational(-295244, 59049)] | |
assert solve(sqrt(x) + sqrt(sqrt(x)) - 4) == [(Rational(-1, 2) + sqrt(17)/2)**4] | |
assert set(solve(Poly(sqrt(exp(x)) + sqrt(exp(-x)) - 4))) in \ | |
[ | |
{log((-sqrt(3) + 2)**2), log((sqrt(3) + 2)**2)}, | |
{2*log(-sqrt(3) + 2), 2*log(sqrt(3) + 2)}, | |
{log(-4*sqrt(3) + 7), log(4*sqrt(3) + 7)}, | |
] | |
assert set(solve(Poly(exp(x) + exp(-x) - 4))) == \ | |
{log(-sqrt(3) + 2), log(sqrt(3) + 2)} | |
assert set(solve(x**y + x**(2*y) - 1, x)) == \ | |
{(Rational(-1, 2) + sqrt(5)/2)**(1/y), (Rational(-1, 2) - sqrt(5)/2)**(1/y)} | |
assert solve(exp(x/y)*exp(-z/y) - 2, y) == [(x - z)/log(2)] | |
assert solve( | |
x**z*y**z - 2, z) in [[log(2)/(log(x) + log(y))], [log(2)/(log(x*y))]] | |
# if you do inversion too soon then multiple roots (as for the following) | |
# will be missed, e.g. if exp(3*x) = exp(3) -> 3*x = 3 | |
E = S.Exp1 | |
assert solve(exp(3*x) - exp(3), x) in [ | |
[1, log(E*(Rational(-1, 2) - sqrt(3)*I/2)), log(E*(Rational(-1, 2) + sqrt(3)*I/2))], | |
[1, log(-E/2 - sqrt(3)*E*I/2), log(-E/2 + sqrt(3)*E*I/2)], | |
] | |
# coverage test | |
p = Symbol('p', positive=True) | |
assert solve((1/p + 1)**(p + 1)) == [] | |
def test_issue_5197(): | |
x = Symbol('x', real=True) | |
assert solve(x**2 + 1, x) == [] | |
n = Symbol('n', integer=True, positive=True) | |
assert solve((n - 1)*(n + 2)*(2*n - 1), n) == [1] | |
x = Symbol('x', positive=True) | |
y = Symbol('y') | |
assert solve([x + 5*y - 2, -3*x + 6*y - 15], x, y) == [] | |
# not {x: -3, y: 1} b/c x is positive | |
# The solution following should not contain (-sqrt(2), sqrt(2)) | |
assert solve([(x + y), 2 - y**2], x, y) == [(sqrt(2), -sqrt(2))] | |
y = Symbol('y', positive=True) | |
# The solution following should not contain {y: -x*exp(x/2)} | |
assert solve(x**2 - y**2/exp(x), y, x, dict=True) == [{y: x*exp(x/2)}] | |
x, y, z = symbols('x y z', positive=True) | |
assert solve(z**2*x**2 - z**2*y**2/exp(x), y, x, z, dict=True) == [{y: x*exp(x/2)}] | |
def test_checking(): | |
assert set( | |
solve(x*(x - y/x), x, check=False)) == {sqrt(y), S.Zero, -sqrt(y)} | |
assert set(solve(x*(x - y/x), x, check=True)) == {sqrt(y), -sqrt(y)} | |
# {x: 0, y: 4} sets denominator to 0 in the following so system should return None | |
assert solve((1/(1/x + 2), 1/(y - 3) - 1)) == [] | |
# 0 sets denominator of 1/x to zero so None is returned | |
assert solve(1/(1/x + 2)) == [] | |
def test_issue_4671_4463_4467(): | |
assert solve(sqrt(x**2 - 1) - 2) in ([sqrt(5), -sqrt(5)], | |
[-sqrt(5), sqrt(5)]) | |
assert solve((2**exp(y**2/x) + 2)/(x**2 + 15), y) == [ | |
-sqrt(x*log(1 + I*pi/log(2))), sqrt(x*log(1 + I*pi/log(2)))] | |
C1, C2 = symbols('C1 C2') | |
f = Function('f') | |
assert solve(C1 + C2/x**2 - exp(-f(x)), f(x)) == [log(x**2/(C1*x**2 + C2))] | |
a = Symbol('a') | |
E = S.Exp1 | |
assert solve(1 - log(a + 4*x**2), x) in ( | |
[-sqrt(-a + E)/2, sqrt(-a + E)/2], | |
[sqrt(-a + E)/2, -sqrt(-a + E)/2] | |
) | |
assert solve(log(a**(-3) - x**2)/a, x) in ( | |
[-sqrt(-1 + a**(-3)), sqrt(-1 + a**(-3))], | |
[sqrt(-1 + a**(-3)), -sqrt(-1 + a**(-3))],) | |
assert solve(1 - log(a + 4*x**2), x) in ( | |
[-sqrt(-a + E)/2, sqrt(-a + E)/2], | |
[sqrt(-a + E)/2, -sqrt(-a + E)/2],) | |
assert solve((a**2 + 1)*(sin(a*x) + cos(a*x)), x) == [-pi/(4*a)] | |
assert solve(3 - (sinh(a*x) + cosh(a*x)), x) == [log(3)/a] | |
assert set(solve(3 - (sinh(a*x) + cosh(a*x)**2), x)) == \ | |
{log(-2 + sqrt(5))/a, log(-sqrt(2) + 1)/a, | |
log(-sqrt(5) - 2)/a, log(1 + sqrt(2))/a} | |
assert solve(atan(x) - 1) == [tan(1)] | |
def test_issue_5132(): | |
r, t = symbols('r,t') | |
assert set(solve([r - x**2 - y**2, tan(t) - y/x], [x, y])) == \ | |
{( | |
-sqrt(r*cos(t)**2), -1*sqrt(r*cos(t)**2)*tan(t)), | |
(sqrt(r*cos(t)**2), sqrt(r*cos(t)**2)*tan(t))} | |
assert solve([exp(x) - sin(y), 1/y - 3], [x, y]) == \ | |
[(log(sin(Rational(1, 3))), Rational(1, 3))] | |
assert solve([exp(x) - sin(y), 1/exp(y) - 3], [x, y]) == \ | |
[(log(-sin(log(3))), -log(3))] | |
assert set(solve([exp(x) - sin(y), y**2 - 4], [x, y])) == \ | |
{(log(-sin(2)), -S(2)), (log(sin(2)), S(2))} | |
eqs = [exp(x)**2 - sin(y) + z**2, 1/exp(y) - 3] | |
assert solve(eqs, set=True) == \ | |
([y, z], { | |
(-log(3), sqrt(-exp(2*x) - sin(log(3)))), | |
(-log(3), -sqrt(-exp(2*x) - sin(log(3))))}) | |
assert solve(eqs, x, z, set=True) == ( | |
[x, z], | |
{(x, sqrt(-exp(2*x) + sin(y))), (x, -sqrt(-exp(2*x) + sin(y)))}) | |
assert set(solve(eqs, x, y)) == \ | |
{ | |
(log(-sqrt(-z**2 - sin(log(3)))), -log(3)), | |
(log(-z**2 - sin(log(3)))/2, -log(3))} | |
assert set(solve(eqs, y, z)) == \ | |
{ | |
(-log(3), -sqrt(-exp(2*x) - sin(log(3)))), | |
(-log(3), sqrt(-exp(2*x) - sin(log(3))))} | |
eqs = [exp(x)**2 - sin(y) + z, 1/exp(y) - 3] | |
assert solve(eqs, set=True) == ([y, z], { | |
(-log(3), -exp(2*x) - sin(log(3)))}) | |
assert solve(eqs, x, z, set=True) == ( | |
[x, z], {(x, -exp(2*x) + sin(y))}) | |
assert set(solve(eqs, x, y)) == { | |
(log(-sqrt(-z - sin(log(3)))), -log(3)), | |
(log(-z - sin(log(3)))/2, -log(3))} | |
assert solve(eqs, z, y) == \ | |
[(-exp(2*x) - sin(log(3)), -log(3))] | |
assert solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), set=True) == ( | |
[x, y], {(S.One, S(3)), (S(3), S.One)}) | |
assert set(solve((sqrt(x**2 + y**2) - sqrt(10), x + y - 4), x, y)) == \ | |
{(S.One, S(3)), (S(3), S.One)} | |
def test_issue_5335(): | |
lam, a0, conc = symbols('lam a0 conc') | |
a = 0.005 | |
b = 0.743436700916726 | |
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, | |
a0*(1 - x/2)*x - 1*y - b*y, | |
x + y - conc] | |
sym = [x, y, a0] | |
# there are 4 solutions obtained manually but only two are valid | |
assert len(solve(eqs, sym, manual=True, minimal=True)) == 2 | |
assert len(solve(eqs, sym)) == 2 # cf below with rational=False | |
def _test_issue_5335_float(): | |
# gives ZeroDivisionError: polynomial division | |
lam, a0, conc = symbols('lam a0 conc') | |
a = 0.005 | |
b = 0.743436700916726 | |
eqs = [lam + 2*y - a0*(1 - x/2)*x - a*x/2*x, | |
a0*(1 - x/2)*x - 1*y - b*y, | |
x + y - conc] | |
sym = [x, y, a0] | |
assert len(solve(eqs, sym, rational=False)) == 2 | |
def test_issue_5767(): | |
assert set(solve([x**2 + y + 4], [x])) == \ | |
{(-sqrt(-y - 4),), (sqrt(-y - 4),)} | |
def _make_example_24609(): | |
D, R, H, B_g, V, D_c = symbols("D, R, H, B_g, V, D_c", real=True, positive=True) | |
Sigma_f, Sigma_a, nu = symbols("Sigma_f, Sigma_a, nu", real=True, positive=True) | |
x = symbols("x", real=True, positive=True) | |
eq = ( | |
2**(S(2)/3)*pi**(S(2)/3)*D_c*(S(231361)/10000 + pi**2/x**2) | |
/(6*V**(S(2)/3)*x**(S(1)/3)) | |
- 2**(S(2)/3)*pi**(S(8)/3)*D_c/(2*V**(S(2)/3)*x**(S(7)/3)) | |
) | |
expected = 100*sqrt(2)*pi/481 | |
return eq, expected, x | |
def test_issue_24609(): | |
# https://github.com/sympy/sympy/issues/24609 | |
eq, expected, x = _make_example_24609() | |
assert solve(eq, x, simplify=True) == [expected] | |
[solapprox] = solve(eq.n(), x) | |
assert abs(solapprox - expected.n()) < 1e-14 | |
def test_issue_24609_xfail(): | |
# | |
# This returns 5 solutions when it should be 1 (with x positive). | |
# Simplification reveals all solutions to be equivalent. It is expected | |
# that solve without simplify=True returns duplicate solutions in some | |
# cases but the core of this equation is a simple quadratic that can easily | |
# be solved without introducing any redundant solutions: | |
# | |
# >>> print(factor_terms(eq.as_numer_denom()[0])) | |
# 2**(2/3)*pi**(2/3)*D_c*V**(2/3)*x**(7/3)*(231361*x**2 - 20000*pi**2) | |
# | |
eq, expected, x = _make_example_24609() | |
assert len(solve(eq, x)) == [expected] | |
# | |
# We do not want to pass this test just by using simplify so if the above | |
# passes then uncomment the additional test below: | |
# | |
# assert len(solve(eq, x, simplify=False)) == 1 | |
def test_polysys(): | |
assert set(solve([x**2 + 2/y - 2, x + y - 3], [x, y])) == \ | |
{(S.One, S(2)), (1 + sqrt(5), 2 - sqrt(5)), | |
(1 - sqrt(5), 2 + sqrt(5))} | |
assert solve([x**2 + y - 2, x**2 + y]) == [] | |
# the ordering should be whatever the user requested | |
assert solve([x**2 + y - 3, x - y - 4], (x, y)) != solve([x**2 + | |
y - 3, x - y - 4], (y, x)) | |
def test_unrad1(): | |
raises(NotImplementedError, lambda: | |
unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) + 3)) | |
raises(NotImplementedError, lambda: | |
unrad(sqrt(x) + (x + 1)**Rational(1, 3) + 2*sqrt(y))) | |
s = symbols('s', cls=Dummy) | |
# checkers to deal with possibility of answer coming | |
# back with a sign change (cf issue 5203) | |
def check(rv, ans): | |
assert bool(rv[1]) == bool(ans[1]) | |
if ans[1]: | |
return s_check(rv, ans) | |
e = rv[0].expand() | |
a = ans[0].expand() | |
return e in [a, -a] and rv[1] == ans[1] | |
def s_check(rv, ans): | |
# get the dummy | |
rv = list(rv) | |
d = rv[0].atoms(Dummy) | |
reps = list(zip(d, [s]*len(d))) | |
# replace s with this dummy | |
rv = (rv[0].subs(reps).expand(), [rv[1][0].subs(reps), rv[1][1].subs(reps)]) | |
ans = (ans[0].subs(reps).expand(), [ans[1][0].subs(reps), ans[1][1].subs(reps)]) | |
return str(rv[0]) in [str(ans[0]), str(-ans[0])] and \ | |
str(rv[1]) == str(ans[1]) | |
assert unrad(1) is None | |
assert check(unrad(sqrt(x)), | |
(x, [])) | |
assert check(unrad(sqrt(x) + 1), | |
(x - 1, [])) | |
assert check(unrad(sqrt(x) + root(x, 3) + 2), | |
(s**3 + s**2 + 2, [s, s**6 - x])) | |
assert check(unrad(sqrt(x)*root(x, 3) + 2), | |
(x**5 - 64, [])) | |
assert check(unrad(sqrt(x) + (x + 1)**Rational(1, 3)), | |
(x**3 - (x + 1)**2, [])) | |
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(2*x)), | |
(-2*sqrt(2)*x - 2*x + 1, [])) | |
assert check(unrad(sqrt(x) + sqrt(x + 1) + 2), | |
(16*x - 9, [])) | |
assert check(unrad(sqrt(x) + sqrt(x + 1) + sqrt(1 - x)), | |
(5*x**2 - 4*x, [])) | |
assert check(unrad(a*sqrt(x) + b*sqrt(x) + c*sqrt(y) + d*sqrt(y)), | |
((a*sqrt(x) + b*sqrt(x))**2 - (c*sqrt(y) + d*sqrt(y))**2, [])) | |
assert check(unrad(sqrt(x) + sqrt(1 - x)), | |
(2*x - 1, [])) | |
assert check(unrad(sqrt(x) + sqrt(1 - x) - 3), | |
(x**2 - x + 16, [])) | |
assert check(unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x)), | |
(5*x**2 - 2*x + 1, [])) | |
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - 3) in [ | |
(25*x**4 + 376*x**3 + 1256*x**2 - 2272*x + 784, []), | |
(25*x**8 - 476*x**6 + 2534*x**4 - 1468*x**2 + 169, [])] | |
assert unrad(sqrt(x) + sqrt(1 - x) + sqrt(2 + x) - sqrt(1 - 2*x)) == \ | |
(41*x**4 + 40*x**3 + 232*x**2 - 160*x + 16, []) # orig root at 0.487 | |
assert check(unrad(sqrt(x) + sqrt(x + 1)), (S.One, [])) | |
eq = sqrt(x) + sqrt(x + 1) + sqrt(1 - sqrt(x)) | |
assert check(unrad(eq), | |
(16*x**2 - 9*x, [])) | |
assert set(solve(eq, check=False)) == {S.Zero, Rational(9, 16)} | |
assert solve(eq) == [] | |
# but this one really does have those solutions | |
assert set(solve(sqrt(x) - sqrt(x + 1) + sqrt(1 - sqrt(x)))) == \ | |
{S.Zero, Rational(9, 16)} | |
assert check(unrad(sqrt(x) + root(x + 1, 3) + 2*sqrt(y), y), | |
(S('2*sqrt(x)*(x + 1)**(1/3) + x - 4*y + (x + 1)**(2/3)'), [])) | |
assert check(unrad(sqrt(x/(1 - x)) + (x + 1)**Rational(1, 3)), | |
(x**5 - x**4 - x**3 + 2*x**2 + x - 1, [])) | |
assert check(unrad(sqrt(x/(1 - x)) + 2*sqrt(y), y), | |
(4*x*y + x - 4*y, [])) | |
assert check(unrad(sqrt(x)*sqrt(1 - x) + 2, x), | |
(x**2 - x + 4, [])) | |
# http://tutorial.math.lamar.edu/ | |
# Classes/Alg/SolveRadicalEqns.aspx#Solve_Rad_Ex2_a | |
assert solve(Eq(x, sqrt(x + 6))) == [3] | |
assert solve(Eq(x + sqrt(x - 4), 4)) == [4] | |
assert solve(Eq(1, x + sqrt(2*x - 3))) == [] | |
assert set(solve(Eq(sqrt(5*x + 6) - 2, x))) == {-S.One, S(2)} | |
assert set(solve(Eq(sqrt(2*x - 1) - sqrt(x - 4), 2))) == {S(5), S(13)} | |
assert solve(Eq(sqrt(x + 7) + 2, sqrt(3 - x))) == [-6] | |
# http://www.purplemath.com/modules/solverad.htm | |
assert solve((2*x - 5)**Rational(1, 3) - 3) == [16] | |
assert set(solve(x + 1 - root(x**4 + 4*x**3 - x, 4))) == \ | |
{Rational(-1, 2), Rational(-1, 3)} | |
assert set(solve(sqrt(2*x**2 - 7) - (3 - x))) == {-S(8), S(2)} | |
assert solve(sqrt(2*x + 9) - sqrt(x + 1) - sqrt(x + 4)) == [0] | |
assert solve(sqrt(x + 4) + sqrt(2*x - 1) - 3*sqrt(x - 1)) == [5] | |
assert solve(sqrt(x)*sqrt(x - 7) - 12) == [16] | |
assert solve(sqrt(x - 3) + sqrt(x) - 3) == [4] | |
assert solve(sqrt(9*x**2 + 4) - (3*x + 2)) == [0] | |
assert solve(sqrt(x) - 2 - 5) == [49] | |
assert solve(sqrt(x - 3) - sqrt(x) - 3) == [] | |
assert solve(sqrt(x - 1) - x + 7) == [10] | |
assert solve(sqrt(x - 2) - 5) == [27] | |
assert solve(sqrt(17*x - sqrt(x**2 - 5)) - 7) == [3] | |
assert solve(sqrt(x) - sqrt(x - 1) + sqrt(sqrt(x))) == [] | |
# don't posify the expression in unrad and do use _mexpand | |
z = sqrt(2*x + 1)/sqrt(x) - sqrt(2 + 1/x) | |
p = posify(z)[0] | |
assert solve(p) == [] | |
assert solve(z) == [] | |
assert solve(z + 6*I) == [Rational(-1, 11)] | |
assert solve(p + 6*I) == [] | |
# issue 8622 | |
assert unrad(root(x + 1, 5) - root(x, 3)) == ( | |
-(x**5 - x**3 - 3*x**2 - 3*x - 1), []) | |
# issue #8679 | |
assert check(unrad(x + root(x, 3) + root(x, 3)**2 + sqrt(y), x), | |
(s**3 + s**2 + s + sqrt(y), [s, s**3 - x])) | |
# for coverage | |
assert check(unrad(sqrt(x) + root(x, 3) + y), | |
(s**3 + s**2 + y, [s, s**6 - x])) | |
assert solve(sqrt(x) + root(x, 3) - 2) == [1] | |
raises(NotImplementedError, lambda: | |
solve(sqrt(x) + root(x, 3) + root(x + 1, 5) - 2)) | |
# fails through a different code path | |
raises(NotImplementedError, lambda: solve(-sqrt(2) + cosh(x)/x)) | |
# unrad some | |
assert solve(sqrt(x + root(x, 3))+root(x - y, 5), y) == [ | |
x + (x**Rational(1, 3) + x)**Rational(5, 2)] | |
assert check(unrad(sqrt(x) - root(x + 1, 3)*sqrt(x + 2) + 2), | |
(s**10 + 8*s**8 + 24*s**6 - 12*s**5 - 22*s**4 - 160*s**3 - 212*s**2 - | |
192*s - 56, [s, s**2 - x])) | |
e = root(x + 1, 3) + root(x, 3) | |
assert unrad(e) == (2*x + 1, []) | |
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) | |
assert check(unrad(eq), | |
(15625*x**4 + 173000*x**3 + 355600*x**2 - 817920*x + 331776, [])) | |
assert check(unrad(root(x, 4) + root(x, 4)**3 - 1), | |
(s**3 + s - 1, [s, s**4 - x])) | |
assert check(unrad(root(x, 2) + root(x, 2)**3 - 1), | |
(x**3 + 2*x**2 + x - 1, [])) | |
assert unrad(x**0.5) is None | |
assert check(unrad(t + root(x + y, 5) + root(x + y, 5)**3), | |
(s**3 + s + t, [s, s**5 - x - y])) | |
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, y), | |
(s**3 + s + x, [s, s**5 - x - y])) | |
assert check(unrad(x + root(x + y, 5) + root(x + y, 5)**3, x), | |
(s**5 + s**3 + s - y, [s, s**5 - x - y])) | |
assert check(unrad(root(x - 1, 3) + root(x + 1, 5) + root(2, 5)), | |
(s**5 + 5*2**Rational(1, 5)*s**4 + s**3 + 10*2**Rational(2, 5)*s**3 + | |
10*2**Rational(3, 5)*s**2 + 5*2**Rational(4, 5)*s + 4, [s, s**3 - x + 1])) | |
raises(NotImplementedError, lambda: | |
unrad((root(x, 2) + root(x, 3) + root(x, 4)).subs(x, x**5 - x + 1))) | |
# the simplify flag should be reset to False for unrad results; | |
# if it's not then this next test will take a long time | |
assert solve(root(x, 3) + root(x, 5) - 2) == [1] | |
eq = (sqrt(x) + sqrt(x + 1) + sqrt(1 - x) - 6*sqrt(5)/5) | |
assert check(unrad(eq), | |
((5*x - 4)*(3125*x**3 + 37100*x**2 + 100800*x - 82944), [])) | |
ans = S(''' | |
[4/5, -1484/375 + 172564/(140625*(114*sqrt(12657)/78125 + | |
12459439/52734375)**(1/3)) + | |
4*(114*sqrt(12657)/78125 + 12459439/52734375)**(1/3)]''') | |
assert solve(eq) == ans | |
# duplicate radical handling | |
assert check(unrad(sqrt(x + root(x + 1, 3)) - root(x + 1, 3) - 2), | |
(s**3 - s**2 - 3*s - 5, [s, s**3 - x - 1])) | |
# cov post-processing | |
e = root(x**2 + 1, 3) - root(x**2 - 1, 5) - 2 | |
assert check(unrad(e), | |
(s**5 - 10*s**4 + 39*s**3 - 80*s**2 + 80*s - 30, | |
[s, s**3 - x**2 - 1])) | |
e = sqrt(x + root(x + 1, 2)) - root(x + 1, 3) - 2 | |
assert check(unrad(e), | |
(s**6 - 2*s**5 - 7*s**4 - 3*s**3 + 26*s**2 + 40*s + 25, | |
[s, s**3 - x - 1])) | |
assert check(unrad(e, _reverse=True), | |
(s**6 - 14*s**5 + 73*s**4 - 187*s**3 + 276*s**2 - 228*s + 89, | |
[s, s**2 - x - sqrt(x + 1)])) | |
# this one needs r0, r1 reversal to work | |
assert check(unrad(sqrt(x + sqrt(root(x, 3) - 1)) - root(x, 6) - 2), | |
(s**12 - 2*s**8 - 8*s**7 - 8*s**6 + s**4 + 8*s**3 + 23*s**2 + | |
32*s + 17, [s, s**6 - x])) | |
# why does this pass | |
assert unrad(root(cosh(x), 3)/x*root(x + 1, 5) - 1) == ( | |
-(x**15 - x**3*cosh(x)**5 - 3*x**2*cosh(x)**5 - 3*x*cosh(x)**5 | |
- cosh(x)**5), []) | |
# and this fail? | |
#assert unrad(sqrt(cosh(x)/x) + root(x + 1, 3)*sqrt(x) - 1) == ( | |
# -s**6 + 6*s**5 - 15*s**4 + 20*s**3 - 15*s**2 + 6*s + x**5 + | |
# 2*x**4 + x**3 - 1, [s, s**2 - cosh(x)/x]) | |
# watch for symbols in exponents | |
assert unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1')) is None | |
assert check(unrad(S('(x+y)**(2*y/3) + (x+y)**(1/3) + 1'), x), | |
(s**(2*y) + s + 1, [s, s**3 - x - y])) | |
# should _Q be so lenient? | |
assert unrad(x**(S.Half/y) + y, x) == (x**(1/y) - y**2, []) | |
# This tests two things: that if full unrad is attempted and fails | |
# the solution should still be found; also it tests that the use of | |
# composite | |
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 | |
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - | |
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 | |
# watch out for when the cov doesn't involve the symbol of interest | |
eq = S('-x + (7*y/8 - (27*x/2 + 27*sqrt(x**2)/2)**(1/3)/3)**3 - 1') | |
assert solve(eq, y) == [ | |
2**(S(2)/3)*(27*x + 27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + | |
S(512)/343)**(S(1)/3)*(-S(1)/2 - sqrt(3)*I/2), 2**(S(2)/3)*(27*x + | |
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + | |
S(512)/343)**(S(1)/3)*(-S(1)/2 + sqrt(3)*I/2), 2**(S(2)/3)*(27*x + | |
27*sqrt(x**2))**(S(1)/3)*S(4)/21 + (512*x/343 + S(512)/343)**(S(1)/3)] | |
eq = root(x + 1, 3) - (root(x, 3) + root(x, 5)) | |
assert check(unrad(eq), | |
(3*s**13 + 3*s**11 + s**9 - 1, [s, s**15 - x])) | |
assert check(unrad(eq - 2), | |
(3*s**13 + 3*s**11 + 6*s**10 + s**9 + 12*s**8 + 6*s**6 + 12*s**5 + | |
12*s**3 + 7, [s, s**15 - x])) | |
assert check(unrad(root(x, 3) - root(x + 1, 4)/2 + root(x + 2, 3)), | |
(s*(4096*s**9 + 960*s**8 + 48*s**7 - s**6 - 1728), | |
[s, s**4 - x - 1])) # orig expr has two real roots: -1, -.389 | |
assert check(unrad(root(x, 3) + root(x + 1, 4) - root(x + 2, 3)/2), | |
(343*s**13 + 2904*s**12 + 1344*s**11 + 512*s**10 - 1323*s**9 - | |
3024*s**8 - 1728*s**7 + 1701*s**5 + 216*s**4 - 729*s, [s, s**4 - x - | |
1])) # orig expr has one real root: -0.048 | |
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3)), | |
(729*s**13 - 216*s**12 + 1728*s**11 - 512*s**10 + 1701*s**9 - | |
3024*s**8 + 1344*s**7 + 1323*s**5 - 2904*s**4 + 343*s, [s, s**4 - x - | |
1])) # orig expr has 2 real roots: -0.91, -0.15 | |
assert check(unrad(root(x, 3)/2 - root(x + 1, 4) + root(x + 2, 3) - 2), | |
(729*s**13 + 1242*s**12 + 18496*s**10 + 129701*s**9 + 388602*s**8 + | |
453312*s**7 - 612864*s**6 - 3337173*s**5 - 6332418*s**4 - 7134912*s**3 | |
- 5064768*s**2 - 2111913*s - 398034, [s, s**4 - x - 1])) | |
# orig expr has 1 real root: 19.53 | |
ans = solve(sqrt(x) + sqrt(x + 1) - | |
sqrt(1 - x) - sqrt(2 + x)) | |
assert len(ans) == 1 and NS(ans[0])[:4] == '0.73' | |
# the fence optimization problem | |
# https://github.com/sympy/sympy/issues/4793#issuecomment-36994519 | |
F = Symbol('F') | |
eq = F - (2*x + 2*y + sqrt(x**2 + y**2)) | |
ans = F*Rational(2, 7) - sqrt(2)*F/14 | |
X = solve(eq, x, check=False) | |
for xi in reversed(X): # reverse since currently, ans is the 2nd one | |
Y = solve((x*y).subs(x, xi).diff(y), y, simplify=False, check=False) | |
if any((a - ans).expand().is_zero for a in Y): | |
break | |
else: | |
assert None # no answer was found | |
assert solve(sqrt(x + 1) + root(x, 3) - 2) == S(''' | |
[(-11/(9*(47/54 + sqrt(93)/6)**(1/3)) + 1/3 + (47/54 + | |
sqrt(93)/6)**(1/3))**3]''') | |
assert solve(sqrt(sqrt(x + 1)) + x**Rational(1, 3) - 2) == S(''' | |
[(-sqrt(-2*(-1/16 + sqrt(6913)/16)**(1/3) + 6/(-1/16 + | |
sqrt(6913)/16)**(1/3) + 17/2 + 121/(4*sqrt(-6/(-1/16 + | |
sqrt(6913)/16)**(1/3) + 2*(-1/16 + sqrt(6913)/16)**(1/3) + 17/4)))/2 + | |
sqrt(-6/(-1/16 + sqrt(6913)/16)**(1/3) + 2*(-1/16 + | |
sqrt(6913)/16)**(1/3) + 17/4)/2 + 9/4)**3]''') | |
assert solve(sqrt(x) + root(sqrt(x) + 1, 3) - 2) == S(''' | |
[(-(81/2 + 3*sqrt(741)/2)**(1/3)/3 + (81/2 + 3*sqrt(741)/2)**(-1/3) + | |
2)**2]''') | |
eq = S(''' | |
-x + (1/2 - sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 | |
+ x*(3*x**2 - 34) + 90)**2/4 - 39304/27) - 45)**(1/3) + 34/(3*(1/2 - | |
sqrt(3)*I/2)*(3*x**3/2 - x*(3*x**2 - 34)/2 + sqrt((-3*x**3 + x*(3*x**2 | |
- 34) + 90)**2/4 - 39304/27) - 45)**(1/3))''') | |
assert check(unrad(eq), | |
(s*-(-s**6 + sqrt(3)*s**6*I - 153*2**Rational(2, 3)*3**Rational(1, 3)*s**4 + | |
51*12**Rational(1, 3)*s**4 - 102*2**Rational(2, 3)*3**Rational(5, 6)*s**4*I - 1620*s**3 + | |
1620*sqrt(3)*s**3*I + 13872*18**Rational(1, 3)*s**2 - 471648 + | |
471648*sqrt(3)*I), [s, s**3 - 306*x - sqrt(3)*sqrt(31212*x**2 - | |
165240*x + 61484) + 810])) | |
assert solve(eq) == [] # not other code errors | |
eq = root(x, 3) - root(y, 3) + root(x, 5) | |
assert check(unrad(eq), | |
(s**15 + 3*s**13 + 3*s**11 + s**9 - y, [s, s**15 - x])) | |
eq = root(x, 3) + root(y, 3) + root(x*y, 4) | |
assert check(unrad(eq), | |
(s*y*(-s**12 - 3*s**11*y - 3*s**10*y**2 - s**9*y**3 - | |
3*s**8*y**2 + 21*s**7*y**3 - 3*s**6*y**4 - 3*s**4*y**4 - | |
3*s**3*y**5 - y**6), [s, s**4 - x*y])) | |
raises(NotImplementedError, | |
lambda: unrad(root(x, 3) + root(y, 3) + root(x*y, 5))) | |
# Test unrad with an Equality | |
eq = Eq(-x**(S(1)/5) + x**(S(1)/3), -3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5)) | |
assert check(unrad(eq), | |
(-s**5 + s**3 - 3**(S(1)/3) - (-1)**(S(3)/5)*3**(S(1)/5), [s, s**15 - x])) | |
# make sure buried radicals are exposed | |
s = sqrt(x) - 1 | |
assert unrad(s**2 - s**3) == (x**3 - 6*x**2 + 9*x - 4, []) | |
# make sure numerators which are already polynomial are rejected | |
assert unrad((x/(x + 1) + 3)**(-2), x) is None | |
# https://github.com/sympy/sympy/issues/23707 | |
eq = sqrt(x - y)*exp(t*sqrt(x - y)) - exp(t*sqrt(x - y)) | |
assert solve(eq, y) == [x - 1] | |
assert unrad(eq) is None | |
def test_unrad_slow(): | |
# this has roots with multiplicity > 1; there should be no | |
# repeats in roots obtained, however | |
eq = (sqrt(1 + sqrt(1 - 4*x**2)) - x*(1 + sqrt(1 + 2*sqrt(1 - 4*x**2)))) | |
assert solve(eq) == [S.Half] | |
def test_unrad_fail(): | |
# this only works if we check real_root(eq.subs(x, Rational(1, 3))) | |
# but checksol doesn't work like that | |
assert solve(root(x**3 - 3*x**2, 3) + 1 - x) == [Rational(1, 3)] | |
assert solve(root(x + 1, 3) + root(x**2 - 2, 5) + 1) == [ | |
-1, -1 + CRootOf(x**5 + x**4 + 5*x**3 + 8*x**2 + 10*x + 5, 0)**3] | |
def test_checksol(): | |
x, y, r, t = symbols('x, y, r, t') | |
eq = r - x**2 - y**2 | |
dict_var_soln = {y: - sqrt(r) / sqrt(tan(t)**2 + 1), | |
x: -sqrt(r)*tan(t)/sqrt(tan(t)**2 + 1)} | |
assert checksol(eq, dict_var_soln) == True | |
assert checksol(Eq(x, False), {x: False}) is True | |
assert checksol(Ne(x, False), {x: False}) is False | |
assert checksol(Eq(x < 1, True), {x: 0}) is True | |
assert checksol(Eq(x < 1, True), {x: 1}) is False | |
assert checksol(Eq(x < 1, False), {x: 1}) is True | |
assert checksol(Eq(x < 1, False), {x: 0}) is False | |
assert checksol(Eq(x + 1, x**2 + 1), {x: 1}) is True | |
assert checksol([x - 1, x**2 - 1], x, 1) is True | |
assert checksol([x - 1, x**2 - 2], x, 1) is False | |
assert checksol(Poly(x**2 - 1), x, 1) is True | |
assert checksol(0, {}) is True | |
assert checksol([1e-10, x - 2], x, 2) is False | |
assert checksol([0.5, 0, x], x, 0) is False | |
assert checksol(y, x, 2) is False | |
assert checksol(x+1e-10, x, 0, numerical=True) is True | |
assert checksol(x+1e-10, x, 0, numerical=False) is False | |
assert checksol(exp(92*x), {x: log(sqrt(2)/2)}) is False | |
assert checksol(exp(92*x), {x: log(sqrt(2)/2) + I*pi}) is False | |
assert checksol(1/x**5, x, 1000) is False | |
raises(ValueError, lambda: checksol(x, 1)) | |
raises(ValueError, lambda: checksol([], x, 1)) | |
def test__invert(): | |
assert _invert(x - 2) == (2, x) | |
assert _invert(2) == (2, 0) | |
assert _invert(exp(1/x) - 3, x) == (1/log(3), x) | |
assert _invert(exp(1/x + a/x) - 3, x) == ((a + 1)/log(3), x) | |
assert _invert(a, x) == (a, 0) | |
def test_issue_4463(): | |
assert solve(-a*x + 2*x*log(x), x) == [exp(a/2)] | |
assert solve(x**x) == [] | |
assert solve(x**x - 2) == [exp(LambertW(log(2)))] | |
assert solve(((x - 3)*(x - 2))**((x - 3)*(x - 4))) == [2] | |
def test_issue_5114_solvers(): | |
a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('a:r') | |
# there is no 'a' in the equation set but this is how the | |
# problem was originally posed | |
syms = a, b, c, f, h, k, n | |
eqs = [b + r/d - c/d, | |
c*(1/d + 1/e + 1/g) - f/g - r/d, | |
f*(1/g + 1/i + 1/j) - c/g - h/i, | |
h*(1/i + 1/l + 1/m) - f/i - k/m, | |
k*(1/m + 1/o + 1/p) - h/m - n/p, | |
n*(1/p + 1/q) - k/p] | |
assert len(solve(eqs, syms, manual=True, check=False, simplify=False)) == 1 | |
def test_issue_5849(): | |
# | |
# XXX: This system does not have a solution for most values of the | |
# parameters. Generally solve returns the empty set for systems that are | |
# generically inconsistent. | |
# | |
I1, I2, I3, I4, I5, I6 = symbols('I1:7') | |
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') | |
e = ( | |
I1 - I2 - I3, | |
I3 - I4 - I5, | |
I4 + I5 - I6, | |
-I1 + I2 + I6, | |
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, | |
-I4 + dQ4, | |
-I2 + dQ2, | |
2*I3 + 2*I5 + 3*I6 - Q2, | |
I4 - 2*I5 + 2*Q4 + dI4 | |
) | |
ans = [{ | |
I1: I2 + I3, | |
dI1: -4*I2 - 8*I3 - 4*I5 - 6*I6 + 24, | |
I4: I3 - I5, | |
dQ4: I3 - I5, | |
Q4: -I3/2 + 3*I5/2 - dI4/2, | |
dQ2: I2, | |
Q2: 2*I3 + 2*I5 + 3*I6}] | |
v = I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4 | |
assert solve(e, *v, manual=True, check=False, dict=True) == ans | |
assert solve(e, *v, manual=True, check=False) == [ | |
tuple([a.get(i, i) for i in v]) for a in ans] | |
assert solve(e, *v, manual=True) == [] | |
assert solve(e, *v) == [] | |
# the matrix solver (tested below) doesn't like this because it produces | |
# a zero row in the matrix. Is this related to issue 4551? | |
assert [ei.subs( | |
ans[0]) for ei in e] == [0, 0, I3 - I6, -I3 + I6, 0, 0, 0, 0, 0] | |
def test_issue_5849_matrix(): | |
'''Same as test_issue_5849 but solved with the matrix solver. | |
A solution only exists if I3 == I6 which is not generically true, | |
but `solve` does not return conditions under which the solution is | |
valid, only a solution that is canonical and consistent with the input. | |
''' | |
# a simple example with the same issue | |
# assert solve([x+y+z, x+y], [x, y]) == {x: y} | |
# the longer example | |
I1, I2, I3, I4, I5, I6 = symbols('I1:7') | |
dI1, dI4, dQ2, dQ4, Q2, Q4 = symbols('dI1,dI4,dQ2,dQ4,Q2,Q4') | |
e = ( | |
I1 - I2 - I3, | |
I3 - I4 - I5, | |
I4 + I5 - I6, | |
-I1 + I2 + I6, | |
-2*I1 - 2*I3 - 2*I5 - 3*I6 - dI1/2 + 12, | |
-I4 + dQ4, | |
-I2 + dQ2, | |
2*I3 + 2*I5 + 3*I6 - Q2, | |
I4 - 2*I5 + 2*Q4 + dI4 | |
) | |
assert solve(e, I1, I4, Q2, Q4, dI1, dI4, dQ2, dQ4) == [] | |
def test_issue_21882(): | |
a, b, c, d, f, g, k = unknowns = symbols('a, b, c, d, f, g, k') | |
equations = [ | |
-k*a + b + 5*f/6 + 2*c/9 + 5*d/6 + 4*a/3, | |
-k*f + 4*f/3 + d/2, | |
-k*d + f/6 + d, | |
13*b/18 + 13*c/18 + 13*a/18, | |
-k*c + b/2 + 20*c/9 + a, | |
-k*b + b + c/18 + a/6, | |
5*b/3 + c/3 + a, | |
2*b/3 + 2*c + 4*a/3, | |
-g, | |
] | |
answer = [ | |
{a: 0, f: 0, b: 0, d: 0, c: 0, g: 0}, | |
{a: 0, f: -d, b: 0, k: S(5)/6, c: 0, g: 0}, | |
{a: -2*c, f: 0, b: c, d: 0, k: S(13)/18, g: 0}] | |
# but not {a: 0, f: 0, b: 0, k: S(3)/2, c: 0, d: 0, g: 0} | |
# since this is already covered by the first solution | |
got = solve(equations, unknowns, dict=True) | |
assert got == answer, (got,answer) | |
def test_issue_5901(): | |
f, g, h = map(Function, 'fgh') | |
a = Symbol('a') | |
D = Derivative(f(x), x) | |
G = Derivative(g(a), a) | |
assert solve(f(x) + f(x).diff(x), f(x)) == \ | |
[-D] | |
assert solve(f(x) - 3, f(x)) == \ | |
[3] | |
assert solve(f(x) - 3*f(x).diff(x), f(x)) == \ | |
[3*D] | |
assert solve([f(x) - 3*f(x).diff(x)], f(x)) == \ | |
{f(x): 3*D} | |
assert solve([f(x) - 3*f(x).diff(x), f(x)**2 - y + 4], f(x), y) == \ | |
[(3*D, 9*D**2 + 4)] | |
assert solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), | |
h(a), g(a), set=True) == \ | |
([h(a), g(a)], { | |
(-sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a)), | |
(sqrt(f(a)**2*g(a)**2 - G)/f(a), g(a))}), solve(-f(a)**2*g(a)**2 + f(a)**2*h(a)**2 + g(a).diff(a), | |
h(a), g(a), set=True) | |
args = [[f(x).diff(x, 2)*(f(x) + g(x)), 2 - g(x)**2], f(x), g(x)] | |
assert solve(*args, set=True)[1] == \ | |
{(-sqrt(2), sqrt(2)), (sqrt(2), -sqrt(2))} | |
eqs = [f(x)**2 + g(x) - 2*f(x).diff(x), g(x)**2 - 4] | |
assert solve(eqs, f(x), g(x), set=True) == \ | |
([f(x), g(x)], { | |
(-sqrt(2*D - 2), S(2)), | |
(sqrt(2*D - 2), S(2)), | |
(-sqrt(2*D + 2), -S(2)), | |
(sqrt(2*D + 2), -S(2))}) | |
# the underlying problem was in solve_linear that was not masking off | |
# anything but a Mul or Add; it now raises an error if it gets anything | |
# but a symbol and solve handles the substitutions necessary so solve_linear | |
# won't make this error | |
raises( | |
ValueError, lambda: solve_linear(f(x) + f(x).diff(x), symbols=[f(x)])) | |
assert solve_linear(f(x) + f(x).diff(x), symbols=[x]) == \ | |
(f(x) + Derivative(f(x), x), 1) | |
assert solve_linear(f(x) + Integral(x, (x, y)), symbols=[x]) == \ | |
(f(x) + Integral(x, (x, y)), 1) | |
assert solve_linear(f(x) + Integral(x, (x, y)) + x, symbols=[x]) == \ | |
(x + f(x) + Integral(x, (x, y)), 1) | |
assert solve_linear(f(y) + Integral(x, (x, y)) + x, symbols=[x]) == \ | |
(x, -f(y) - Integral(x, (x, y))) | |
assert solve_linear(x - f(x)/a + (f(x) - 1)/a, symbols=[x]) == \ | |
(x, 1/a) | |
assert solve_linear(x + Derivative(2*x, x)) == \ | |
(x, -2) | |
assert solve_linear(x + Integral(x, y), symbols=[x]) == \ | |
(x, 0) | |
assert solve_linear(x + Integral(x, y) - 2, symbols=[x]) == \ | |
(x, 2/(y + 1)) | |
assert set(solve(x + exp(x)**2, exp(x))) == \ | |
{-sqrt(-x), sqrt(-x)} | |
assert solve(x + exp(x), x, implicit=True) == \ | |
[-exp(x)] | |
assert solve(cos(x) - sin(x), x, implicit=True) == [] | |
assert solve(x - sin(x), x, implicit=True) == \ | |
[sin(x)] | |
assert solve(x**2 + x - 3, x, implicit=True) == \ | |
[-x**2 + 3] | |
assert solve(x**2 + x - 3, x**2, implicit=True) == \ | |
[-x + 3] | |
def test_issue_5912(): | |
assert set(solve(x**2 - x - 0.1, rational=True)) == \ | |
{S.Half + sqrt(35)/10, -sqrt(35)/10 + S.Half} | |
ans = solve(x**2 - x - 0.1, rational=False) | |
assert len(ans) == 2 and all(a.is_Number for a in ans) | |
ans = solve(x**2 - x - 0.1) | |
assert len(ans) == 2 and all(a.is_Number for a in ans) | |
def test_float_handling(): | |
def test(e1, e2): | |
return len(e1.atoms(Float)) == len(e2.atoms(Float)) | |
assert solve(x - 0.5, rational=True)[0].is_Rational | |
assert solve(x - 0.5, rational=False)[0].is_Float | |
assert solve(x - S.Half, rational=False)[0].is_Rational | |
assert solve(x - 0.5, rational=None)[0].is_Float | |
assert solve(x - S.Half, rational=None)[0].is_Rational | |
assert test(nfloat(1 + 2*x), 1.0 + 2.0*x) | |
for contain in [list, tuple, set]: | |
ans = nfloat(contain([1 + 2*x])) | |
assert type(ans) is contain and test(list(ans)[0], 1.0 + 2.0*x) | |
k, v = list(nfloat({2*x: [1 + 2*x]}).items())[0] | |
assert test(k, 2*x) and test(v[0], 1.0 + 2.0*x) | |
assert test(nfloat(cos(2*x)), cos(2.0*x)) | |
assert test(nfloat(3*x**2), 3.0*x**2) | |
assert test(nfloat(3*x**2, exponent=True), 3.0*x**2.0) | |
assert test(nfloat(exp(2*x)), exp(2.0*x)) | |
assert test(nfloat(x/3), x/3.0) | |
assert test(nfloat(x**4 + 2*x + cos(Rational(1, 3)) + 1), | |
x**4 + 2.0*x + 1.94495694631474) | |
# don't call nfloat if there is no solution | |
tot = 100 + c + z + t | |
assert solve(((.7 + c)/tot - .6, (.2 + z)/tot - .3, t/tot - .1)) == [] | |
def test_check_assumptions(): | |
x = symbols('x', positive=True) | |
assert solve(x**2 - 1) == [1] | |
def test_issue_6056(): | |
assert solve(tanh(x + 3)*tanh(x - 3) - 1) == [] | |
assert solve(tanh(x - 1)*tanh(x + 1) + 1) == \ | |
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] | |
assert solve((tanh(x + 3)*tanh(x - 3) + 1)**2) == \ | |
[I*pi*Rational(-3, 4), -I*pi/4, I*pi/4, I*pi*Rational(3, 4)] | |
def test_issue_5673(): | |
eq = -x + exp(exp(LambertW(log(x)))*LambertW(log(x))) | |
assert checksol(eq, x, 2) is True | |
assert checksol(eq, x, 2, numerical=False) is None | |
def test_exclude(): | |
R, C, Ri, Vout, V1, Vminus, Vplus, s = \ | |
symbols('R, C, Ri, Vout, V1, Vminus, Vplus, s') | |
Rf = symbols('Rf', positive=True) # to eliminate Rf = 0 soln | |
eqs = [C*V1*s + Vplus*(-2*C*s - 1/R), | |
Vminus*(-1/Ri - 1/Rf) + Vout/Rf, | |
C*Vplus*s + V1*(-C*s - 1/R) + Vout/R, | |
-Vminus + Vplus] | |
assert solve(eqs, exclude=s*C*R) == [ | |
{ | |
Rf: Ri*(C*R*s + 1)**2/(C*R*s), | |
Vminus: Vplus, | |
V1: 2*Vplus + Vplus/(C*R*s), | |
Vout: C*R*Vplus*s + 3*Vplus + Vplus/(C*R*s)}, | |
{ | |
Vplus: 0, | |
Vminus: 0, | |
V1: 0, | |
Vout: 0}, | |
] | |
# TODO: Investigate why currently solution [0] is preferred over [1]. | |
assert solve(eqs, exclude=[Vplus, s, C]) in [[{ | |
Vminus: Vplus, | |
V1: Vout/2 + Vplus/2 + sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, | |
R: (Vout - 3*Vplus - sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), | |
Rf: Ri*(Vout - Vplus)/Vplus, | |
}, { | |
Vminus: Vplus, | |
V1: Vout/2 + Vplus/2 - sqrt((Vout - 5*Vplus)*(Vout - Vplus))/2, | |
R: (Vout - 3*Vplus + sqrt(Vout**2 - 6*Vout*Vplus + 5*Vplus**2))/(2*C*Vplus*s), | |
Rf: Ri*(Vout - Vplus)/Vplus, | |
}], [{ | |
Vminus: Vplus, | |
Vout: (V1**2 - V1*Vplus - Vplus**2)/(V1 - 2*Vplus), | |
Rf: Ri*(V1 - Vplus)**2/(Vplus*(V1 - 2*Vplus)), | |
R: Vplus/(C*s*(V1 - 2*Vplus)), | |
}]] | |
def test_high_order_roots(): | |
s = x**5 + 4*x**3 + 3*x**2 + Rational(7, 4) | |
assert set(solve(s)) == set(Poly(s*4, domain='ZZ').all_roots()) | |
def test_minsolve_linear_system(): | |
pqt = {"quick": True, "particular": True} | |
pqf = {"quick": False, "particular": True} | |
assert solve([x + y - 5, 2*x - y - 1], **pqt) == {x: 2, y: 3} | |
assert solve([x + y - 5, 2*x - y - 1], **pqf) == {x: 2, y: 3} | |
def count(dic): | |
return len([x for x in dic.values() if x == 0]) | |
assert count(solve([x + y + z, y + z + a + t], **pqt)) == 3 | |
assert count(solve([x + y + z, y + z + a + t], **pqf)) == 3 | |
assert count(solve([x + y + z, y + z + a], **pqt)) == 1 | |
assert count(solve([x + y + z, y + z + a], **pqf)) == 2 | |
# issue 22718 | |
A = Matrix([ | |
[ 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0], | |
[ 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, -1, -1, 0, 0], | |
[-1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, 1], | |
[ 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, -1, 0, -1, 0], | |
[-1, 0, -1, 0, 0, -1, 0, 0, 0, 0, 1, 0, 1, 1], | |
[-1, 0, 0, -1, 0, 0, -1, 0, 0, 0, -1, 0, 0, -1], | |
[ 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, -1, -1, 0], | |
[ 0, -1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 1], | |
[ 0, -1, 0, -1, 0, 0, 0, 0, -1, 0, 0, -1, 0, -1], | |
[ 0, 0, -1, -1, 0, 0, 0, 0, 0, -1, 0, 0, -1, -1], | |
[ 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], | |
[ 0, 0, 0, 0, -1, -1, 0, -1, 0, 0, 0, 0, 0, 0]]) | |
v = Matrix(symbols("v:14", integer=True)) | |
B = Matrix([[2], [-2], [0], [0], [0], [0], [0], [0], [0], | |
[0], [0], [0]]) | |
eqs = A@v-B | |
assert solve(eqs) == [] | |
assert solve(eqs, particular=True) == [] # assumption violated | |
assert all(v for v in solve([x + y + z, y + z + a]).values()) | |
for _q in (True, False): | |
assert not all(v for v in solve( | |
[x + y + z, y + z + a], quick=_q, | |
particular=True).values()) | |
# raise error if quick used w/o particular=True | |
raises(ValueError, lambda: solve([x + 1], quick=_q)) | |
raises(ValueError, lambda: solve([x + 1], quick=_q, particular=False)) | |
# and give a good error message if someone tries to use | |
# particular with a single equation | |
raises(ValueError, lambda: solve(x + 1, particular=True)) | |
def test_real_roots(): | |
# cf. issue 6650 | |
x = Symbol('x', real=True) | |
assert len(solve(x**5 + x**3 + 1)) == 1 | |
def test_issue_6528(): | |
eqs = [ | |
327600995*x**2 - 37869137*x + 1809975124*y**2 - 9998905626, | |
895613949*x**2 - 273830224*x*y + 530506983*y**2 - 10000000000] | |
# two expressions encountered are > 1400 ops long so if this hangs | |
# it is likely because simplification is being done | |
assert len(solve(eqs, y, x, check=False)) == 4 | |
def test_overdetermined(): | |
x = symbols('x', real=True) | |
eqs = [Abs(4*x - 7) - 5, Abs(3 - 8*x) - 1] | |
assert solve(eqs, x) == [(S.Half,)] | |
assert solve(eqs, x, manual=True) == [(S.Half,)] | |
assert solve(eqs, x, manual=True, check=False) == [(S.Half,), (S(3),)] | |
def test_issue_6605(): | |
x = symbols('x') | |
assert solve(4**(x/2) - 2**(x/3)) == [0, 3*I*pi/log(2)] | |
# while the first one passed, this one failed | |
x = symbols('x', real=True) | |
assert solve(5**(x/2) - 2**(x/3)) == [0] | |
b = sqrt(6)*sqrt(log(2))/sqrt(log(5)) | |
assert solve(5**(x/2) - 2**(3/x)) == [-b, b] | |
def test__ispow(): | |
assert _ispow(x**2) | |
assert not _ispow(x) | |
assert not _ispow(True) | |
def test_issue_6644(): | |
eq = -sqrt((m - q)**2 + (-m/(2*q) + S.Half)**2) + sqrt((-m**2/2 - sqrt( | |
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2 + (m**2/2 - m - sqrt( | |
4*m**4 - 4*m**2 + 8*m + 1)/4 - Rational(1, 4))**2) | |
sol = solve(eq, q, simplify=False, check=False) | |
assert len(sol) == 5 | |
def test_issue_6752(): | |
assert solve([a**2 + a, a - b], [a, b]) == [(-1, -1), (0, 0)] | |
assert solve([a**2 + a*c, a - b], [a, b]) == [(0, 0), (-c, -c)] | |
def test_issue_6792(): | |
assert solve(x*(x - 1)**2*(x + 1)*(x**6 - x + 1)) == [ | |
-1, 0, 1, CRootOf(x**6 - x + 1, 0), CRootOf(x**6 - x + 1, 1), | |
CRootOf(x**6 - x + 1, 2), CRootOf(x**6 - x + 1, 3), | |
CRootOf(x**6 - x + 1, 4), CRootOf(x**6 - x + 1, 5)] | |
def test_issues_6819_6820_6821_6248_8692_25777_25779(): | |
# issue 6821 | |
x, y = symbols('x y', real=True) | |
assert solve(abs(x + 3) - 2*abs(x - 3)) == [1, 9] | |
assert solve([abs(x) - 2, arg(x) - pi], x) == [(-2,)] | |
assert set(solve(abs(x - 7) - 8)) == {-S.One, S(15)} | |
# issue 8692 | |
assert solve(Eq(Abs(x + 1) + Abs(x**2 - 7), 9), x) == [ | |
Rational(-1, 2) + sqrt(61)/2, -sqrt(69)/2 + S.Half] | |
# issue 7145 | |
assert solve(2*abs(x) - abs(x - 1)) == [-1, Rational(1, 3)] | |
# 25777 | |
assert solve(abs(x**3 + x + 2)/(x + 1)) == [] | |
# 25779 | |
assert solve(abs(x)) == [0] | |
assert solve(Eq(abs(x**2 - 2*x), 4), x) == [ | |
1 - sqrt(5), 1 + sqrt(5)] | |
nn = symbols('nn', nonnegative=True) | |
assert solve(abs(sqrt(nn))) == [0] | |
nz = symbols('nz', nonzero=True) | |
assert solve(Eq(Abs(4 + 1 / (4*nz)), 0)) == [-Rational(1, 16)] | |
x = symbols('x') | |
assert solve([re(x) - 1, im(x) - 2], x) == [ | |
{x: 1 + 2*I, re(x): 1, im(x): 2}] | |
# check for 'dict' handling of solution | |
eq = sqrt(re(x)**2 + im(x)**2) - 3 | |
assert solve(eq) == solve(eq, x) | |
i = symbols('i', imaginary=True) | |
assert solve(abs(i) - 3) == [-3*I, 3*I] | |
raises(NotImplementedError, lambda: solve(abs(x) - 3)) | |
w = symbols('w', integer=True) | |
assert solve(2*x**w - 4*y**w, w) == solve((x/y)**w - 2, w) | |
x, y = symbols('x y', real=True) | |
assert solve(x + y*I + 3) == {y: 0, x: -3} | |
# issue 2642 | |
assert solve(x*(1 + I)) == [0] | |
x, y = symbols('x y', imaginary=True) | |
assert solve(x + y*I + 3 + 2*I) == {x: -2*I, y: 3*I} | |
x = symbols('x', real=True) | |
assert solve(x + y + 3 + 2*I) == {x: -3, y: -2*I} | |
# issue 6248 | |
f = Function('f') | |
assert solve(f(x + 1) - f(2*x - 1)) == [2] | |
assert solve(log(x + 1) - log(2*x - 1)) == [2] | |
x = symbols('x') | |
assert solve(2**x + 4**x) == [I*pi/log(2)] | |
def test_issue_17638(): | |
assert solve(((2-exp(2*x))*exp(x))/(exp(2*x)+2)**2 > 0, x) == (-oo < x) & (x < log(2)/2) | |
assert solve(((2-exp(2*x)+2)*exp(x+2))/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < log(4)/2) | |
assert solve((exp(x)+2+x**2)*exp(2*x+2)/(exp(x)+2)**2 > 0, x) == (-oo < x) & (x < oo) | |
def test_issue_14607(): | |
# issue 14607 | |
s, tau_c, tau_1, tau_2, phi, K = symbols( | |
's, tau_c, tau_1, tau_2, phi, K') | |
target = (s**2*tau_1*tau_2 + s*tau_1 + s*tau_2 + 1)/(K*s*(-phi + tau_c)) | |
K_C, tau_I, tau_D = symbols('K_C, tau_I, tau_D', | |
positive=True, nonzero=True) | |
PID = K_C*(1 + 1/(tau_I*s) + tau_D*s) | |
eq = (target - PID).together() | |
eq *= denom(eq).simplify() | |
eq = Poly(eq, s) | |
c = eq.coeffs() | |
vars = [K_C, tau_I, tau_D] | |
s = solve(c, vars, dict=True) | |
assert len(s) == 1 | |
knownsolution = {K_C: -(tau_1 + tau_2)/(K*(phi - tau_c)), | |
tau_I: tau_1 + tau_2, | |
tau_D: tau_1*tau_2/(tau_1 + tau_2)} | |
for var in vars: | |
assert s[0][var].simplify() == knownsolution[var].simplify() | |
def test_lambert_multivariate(): | |
from sympy.abc import x, y | |
assert _filtered_gens(Poly(x + 1/x + exp(x) + y), x) == {x, exp(x)} | |
assert _lambert(x, x) == [] | |
assert solve((x**2 - 2*x + 1).subs(x, log(x) + 3*x)) == [LambertW(3*S.Exp1)/3] | |
assert solve((x**2 - 2*x + 1).subs(x, (log(x) + 3*x)**2 - 1)) == \ | |
[LambertW(3*exp(-sqrt(2)))/3, LambertW(3*exp(sqrt(2)))/3] | |
assert solve((x**2 - 2*x - 2).subs(x, log(x) + 3*x)) == \ | |
[LambertW(3*exp(1 - sqrt(3)))/3, LambertW(3*exp(1 + sqrt(3)))/3] | |
eq = (x*exp(x) - 3).subs(x, x*exp(x)) | |
assert solve(eq) == [LambertW(3*exp(-LambertW(3)))] | |
# coverage test | |
raises(NotImplementedError, lambda: solve(x - sin(x)*log(y - x), x)) | |
ans = [3, -3*LambertW(-log(3)/3)/log(3)] # 3 and 2.478... | |
assert solve(x**3 - 3**x, x) == ans | |
assert set(solve(3*log(x) - x*log(3))) == set(ans) | |
assert solve(LambertW(2*x) - y, x) == [y*exp(y)/2] | |
def test_other_lambert(): | |
assert solve(3*sin(x) - x*sin(3), x) == [3] | |
assert set(solve(x**a - a**x), x) == { | |
a, -a*LambertW(-log(a)/a)/log(a)} | |
def test_lambert_bivariate(): | |
# tests passing current implementation | |
assert solve((x**2 + x)*exp(x**2 + x) - 1) == [ | |
Rational(-1, 2) + sqrt(1 + 4*LambertW(1))/2, | |
Rational(-1, 2) - sqrt(1 + 4*LambertW(1))/2] | |
assert solve((x**2 + x)*exp((x**2 + x)*2) - 1) == [ | |
Rational(-1, 2) + sqrt(1 + 2*LambertW(2))/2, | |
Rational(-1, 2) - sqrt(1 + 2*LambertW(2))/2] | |
assert solve(a/x + exp(x/2), x) == [2*LambertW(-a/2)] | |
assert solve((a/x + exp(x/2)).diff(x), x) == \ | |
[4*LambertW(-sqrt(2)*sqrt(a)/4), 4*LambertW(sqrt(2)*sqrt(a)/4)] | |
assert solve((1/x + exp(x/2)).diff(x), x) == \ | |
[4*LambertW(-sqrt(2)/4), | |
4*LambertW(sqrt(2)/4), # nsimplifies as 2*2**(141/299)*3**(206/299)*5**(205/299)*7**(37/299)/21 | |
4*LambertW(-sqrt(2)/4, -1)] | |
assert solve(x*log(x) + 3*x + 1, x) == \ | |
[exp(-3 + LambertW(-exp(3)))] | |
assert solve(-x**2 + 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] | |
assert solve(x**2 - 2**x, x) == [2, 4, -2*LambertW(log(2)/2)/log(2)] | |
ans = solve(3*x + 5 + 2**(-5*x + 3), x) | |
assert len(ans) == 1 and ans[0].expand() == \ | |
Rational(-5, 3) + LambertW(-10240*root(2, 3)*log(2)/3)/(5*log(2)) | |
assert solve(5*x - 1 + 3*exp(2 - 7*x), x) == \ | |
[Rational(1, 5) + LambertW(-21*exp(Rational(3, 5))/5)/7] | |
assert solve((log(x) + x).subs(x, x**2 + 1)) == [ | |
-I*sqrt(-LambertW(1) + 1), sqrt(-1 + LambertW(1))] | |
# check collection | |
ax = a**(3*x + 5) | |
ans = solve(3*log(ax) + b*log(ax) + ax, x) | |
x0 = 1/log(a) | |
x1 = sqrt(3)*I | |
x2 = b + 3 | |
x3 = x2*LambertW(1/x2)/a**5 | |
x4 = x3**Rational(1, 3)/2 | |
assert ans == [ | |
x0*log(x4*(-x1 - 1)), | |
x0*log(x4*(x1 - 1)), | |
x0*log(x3)/3] | |
x1 = LambertW(Rational(1, 3)) | |
x2 = a**(-5) | |
x3 = -3**Rational(1, 3) | |
x4 = 3**Rational(5, 6)*I | |
x5 = x1**Rational(1, 3)*x2**Rational(1, 3)/2 | |
ans = solve(3*log(ax) + ax, x) | |
assert ans == [ | |
x0*log(3*x1*x2)/3, | |
x0*log(x5*(x3 - x4)), | |
x0*log(x5*(x3 + x4))] | |
# coverage | |
p = symbols('p', positive=True) | |
eq = 4*2**(2*p + 3) - 2*p - 3 | |
assert _solve_lambert(eq, p, _filtered_gens(Poly(eq), p)) == [ | |
Rational(-3, 2) - LambertW(-4*log(2))/(2*log(2))] | |
assert set(solve(3**cos(x) - cos(x)**3)) == { | |
acos(3), acos(-3*LambertW(-log(3)/3)/log(3))} | |
# should give only one solution after using `uniq` | |
assert solve(2*log(x) - 2*log(z) + log(z + log(x) + log(z)), x) == [ | |
exp(-z + LambertW(2*z**4*exp(2*z))/2)/z] | |
# cases when p != S.One | |
# issue 4271 | |
ans = solve((a/x + exp(x/2)).diff(x, 2), x) | |
x0 = (-a)**Rational(1, 3) | |
x1 = sqrt(3)*I | |
x2 = x0/6 | |
assert ans == [ | |
6*LambertW(x0/3), | |
6*LambertW(x2*(-x1 - 1)), | |
6*LambertW(x2*(x1 - 1))] | |
assert solve((1/x + exp(x/2)).diff(x, 2), x) == \ | |
[6*LambertW(Rational(-1, 3)), 6*LambertW(Rational(1, 6) - sqrt(3)*I/6), \ | |
6*LambertW(Rational(1, 6) + sqrt(3)*I/6), 6*LambertW(Rational(-1, 3), -1)] | |
assert solve(x**2 - y**2/exp(x), x, y, dict=True) == \ | |
[{x: 2*LambertW(-y/2)}, {x: 2*LambertW(y/2)}] | |
# this is slow but not exceedingly slow | |
assert solve((x**3)**(x/2) + pi/2, x) == [ | |
exp(LambertW(-2*log(2)/3 + 2*log(pi)/3 + I*pi*Rational(2, 3)))] | |
# issue 23253 | |
assert solve((1/log(sqrt(x) + 2)**2 - 1/x)) == [ | |
(LambertW(-exp(-2), -1) + 2)**2] | |
assert solve((1/log(1/sqrt(x) + 2)**2 - x)) == [ | |
(LambertW(-exp(-2), -1) + 2)**-2] | |
assert solve((1/log(x**2 + 2)**2 - x**-4)) == [ | |
-I*sqrt(2 - LambertW(exp(2))), | |
-I*sqrt(LambertW(-exp(-2)) + 2), | |
sqrt(-2 - LambertW(-exp(-2))), | |
sqrt(-2 + LambertW(exp(2))), | |
-sqrt(-2 - LambertW(-exp(-2), -1)), | |
sqrt(-2 - LambertW(-exp(-2), -1))] | |
def test_rewrite_trig(): | |
assert solve(sin(x) + tan(x)) == [0, -pi, pi, 2*pi] | |
assert solve(sin(x) + sec(x)) == [ | |
-2*atan(Rational(-1, 2) + sqrt(2)*sqrt(1 - sqrt(3)*I)/2 + sqrt(3)*I/2), | |
2*atan(S.Half - sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half | |
+ sqrt(2)*sqrt(1 + sqrt(3)*I)/2 + sqrt(3)*I/2), 2*atan(S.Half - | |
sqrt(3)*I/2 + sqrt(2)*sqrt(1 - sqrt(3)*I)/2)] | |
assert solve(sinh(x) + tanh(x)) == [0, I*pi] | |
# issue 6157 | |
assert solve(2*sin(x) - cos(x), x) == [atan(S.Half)] | |
def test_rewrite_trigh(): | |
# if this import passes then the test below should also pass | |
from sympy.functions.elementary.hyperbolic import sech | |
assert solve(sinh(x) + sech(x)) == [ | |
2*atanh(Rational(-1, 2) + sqrt(5)/2 - sqrt(-2*sqrt(5) + 2)/2), | |
2*atanh(Rational(-1, 2) + sqrt(5)/2 + sqrt(-2*sqrt(5) + 2)/2), | |
2*atanh(-sqrt(5)/2 - S.Half + sqrt(2 + 2*sqrt(5))/2), | |
2*atanh(-sqrt(2 + 2*sqrt(5))/2 - sqrt(5)/2 - S.Half)] | |
def test_uselogcombine(): | |
eq = z - log(x) + log(y/(x*(-1 + y**2/x**2))) | |
assert solve(eq, x, force=True) == [-sqrt(y*(y - exp(z))), sqrt(y*(y - exp(z)))] | |
assert solve(log(x + 3) + log(1 + 3/x) - 3) in [ | |
[-3 + sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 + exp(3)/2, | |
-sqrt(-12 + exp(3))*exp(Rational(3, 2))/2 - 3 + exp(3)/2], | |
[-3 + sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2, | |
-3 - sqrt(-36 + (-exp(3) + 6)**2)/2 + exp(3)/2], | |
] | |
assert solve(log(exp(2*x) + 1) + log(-tanh(x) + 1) - log(2)) == [] | |
def test_atan2(): | |
assert solve(atan2(x, 2) - pi/3, x) == [2*sqrt(3)] | |
def test_errorinverses(): | |
assert solve(erf(x) - y, x) == [erfinv(y)] | |
assert solve(erfinv(x) - y, x) == [erf(y)] | |
assert solve(erfc(x) - y, x) == [erfcinv(y)] | |
assert solve(erfcinv(x) - y, x) == [erfc(y)] | |
def test_issue_2725(): | |
R = Symbol('R') | |
eq = sqrt(2)*R*sqrt(1/(R + 1)) + (R + 1)*(sqrt(2)*sqrt(1/(R + 1)) - 1) | |
sol = solve(eq, R, set=True)[1] | |
assert sol == {(Rational(5, 3) + (Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + | |
sqrt(111)*I/9)**Rational(1, 3) + 40/(9*((Rational(-1, 2) - sqrt(3)*I/2)*(Rational(251, 27) + | |
sqrt(111)*I/9)**Rational(1, 3))),), (Rational(5, 3) + 40/(9*(Rational(251, 27) + | |
sqrt(111)*I/9)**Rational(1, 3)) + (Rational(251, 27) + sqrt(111)*I/9)**Rational(1, 3),)} | |
def test_issue_5114_6611(): | |
# See that it doesn't hang; this solves in about 2 seconds. | |
# Also check that the solution is relatively small. | |
# Note: the system in issue 6611 solves in about 5 seconds and has | |
# an op-count of 138336 (with simplify=False). | |
b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r = symbols('b:r') | |
eqs = Matrix([ | |
[b - c/d + r/d], [c*(1/g + 1/e + 1/d) - f/g - r/d], | |
[-c/g + f*(1/j + 1/i + 1/g) - h/i], [-f/i + h*(1/m + 1/l + 1/i) - k/m], | |
[-h/m + k*(1/p + 1/o + 1/m) - n/p], [-k/p + n*(1/q + 1/p)]]) | |
v = Matrix([f, h, k, n, b, c]) | |
ans = solve(list(eqs), list(v), simplify=False) | |
# If time is taken to simplify then then 2617 below becomes | |
# 1168 and the time is about 50 seconds instead of 2. | |
assert sum(s.count_ops() for s in ans.values()) <= 3270 | |
def test_det_quick(): | |
m = Matrix(3, 3, symbols('a:9')) | |
assert m.det() == det_quick(m) # calls det_perm | |
m[0, 0] = 1 | |
assert m.det() == det_quick(m) # calls det_minor | |
m = Matrix(3, 3, list(range(9))) | |
assert m.det() == det_quick(m) # defaults to .det() | |
# make sure they work with Sparse | |
s = SparseMatrix(2, 2, (1, 2, 1, 4)) | |
assert det_perm(s) == det_minor(s) == s.det() | |
def test_real_imag_splitting(): | |
a, b = symbols('a b', real=True) | |
assert solve(sqrt(a**2 + b**2) - 3, a) == \ | |
[-sqrt(-b**2 + 9), sqrt(-b**2 + 9)] | |
a, b = symbols('a b', imaginary=True) | |
assert solve(sqrt(a**2 + b**2) - 3, a) == [] | |
def test_issue_7110(): | |
y = -2*x**3 + 4*x**2 - 2*x + 5 | |
assert any(ask(Q.real(i)) for i in solve(y)) | |
def test_units(): | |
assert solve(1/x - 1/(2*cm)) == [2*cm] | |
def test_issue_7547(): | |
A, B, V = symbols('A,B,V') | |
eq1 = Eq(630.26*(V - 39.0)*V*(V + 39) - A + B, 0) | |
eq2 = Eq(B, 1.36*10**8*(V - 39)) | |
eq3 = Eq(A, 5.75*10**5*V*(V + 39.0)) | |
sol = Matrix(nsolve(Tuple(eq1, eq2, eq3), [A, B, V], (0, 0, 0))) | |
assert str(sol) == str(Matrix( | |
[['4442890172.68209'], | |
['4289299466.1432'], | |
['70.5389666628177']])) | |
def test_issue_7895(): | |
r = symbols('r', real=True) | |
assert solve(sqrt(r) - 2) == [4] | |
def test_issue_2777(): | |
# the equations represent two circles | |
x, y = symbols('x y', real=True) | |
e1, e2 = sqrt(x**2 + y**2) - 10, sqrt(y**2 + (-x + 10)**2) - 3 | |
a, b = Rational(191, 20), 3*sqrt(391)/20 | |
ans = [(a, -b), (a, b)] | |
assert solve((e1, e2), (x, y)) == ans | |
assert solve((e1, e2/(x - a)), (x, y)) == [] | |
# make the 2nd circle's radius be -3 | |
e2 += 6 | |
assert solve((e1, e2), (x, y)) == [] | |
assert solve((e1, e2), (x, y), check=False) == ans | |
def test_issue_7322(): | |
number = 5.62527e-35 | |
assert solve(x - number, x)[0] == number | |
def test_nsolve(): | |
raises(ValueError, lambda: nsolve(x, (-1, 1), method='bisect')) | |
raises(TypeError, lambda: nsolve((x - y + 3,x + y,z - y),(x,y,z),(-50,50))) | |
raises(TypeError, lambda: nsolve((x + y, x - y), (0, 1))) | |
raises(TypeError, lambda: nsolve(x < 0.5, x, 1)) | |
def test_high_order_multivariate(): | |
assert len(solve(a*x**3 - x + 1, x)) == 3 | |
assert len(solve(a*x**4 - x + 1, x)) == 4 | |
assert solve(a*x**5 - x + 1, x) == [] # incomplete solution allowed | |
raises(NotImplementedError, lambda: | |
solve(a*x**5 - x + 1, x, incomplete=False)) | |
# result checking must always consider the denominator and CRootOf | |
# must be checked, too | |
d = x**5 - x + 1 | |
assert solve(d*(1 + 1/d)) == [CRootOf(d + 1, i) for i in range(5)] | |
d = x - 1 | |
assert solve(d*(2 + 1/d)) == [S.Half] | |
def test_base_0_exp_0(): | |
assert solve(0**x - 1) == [0] | |
assert solve(0**(x - 2) - 1) == [2] | |
assert solve(S('x*(1/x**0 - x)', evaluate=False)) == \ | |
[0, 1] | |
def test__simple_dens(): | |
assert _simple_dens(1/x**0, [x]) == set() | |
assert _simple_dens(1/x**y, [x]) == {x**y} | |
assert _simple_dens(1/root(x, 3), [x]) == {x} | |
def test_issue_8755(): | |
# This tests two things: that if full unrad is attempted and fails | |
# the solution should still be found; also it tests the use of | |
# keyword `composite`. | |
assert len(solve(sqrt(y)*x + x**3 - 1, x)) == 3 | |
assert len(solve(-512*y**3 + 1344*(x + 2)**Rational(1, 3)*y**2 - | |
1176*(x + 2)**Rational(2, 3)*y - 169*x + 686, y, _unrad=False)) == 3 | |
def test_issue_8828(): | |
x1 = 0 | |
y1 = -620 | |
r1 = 920 | |
x2 = 126 | |
y2 = 276 | |
x3 = 51 | |
y3 = 205 | |
r3 = 104 | |
v = x, y, z | |
f1 = (x - x1)**2 + (y - y1)**2 - (r1 - z)**2 | |
f2 = (x - x2)**2 + (y - y2)**2 - z**2 | |
f3 = (x - x3)**2 + (y - y3)**2 - (r3 - z)**2 | |
F = f1,f2,f3 | |
g1 = sqrt((x - x1)**2 + (y - y1)**2) + z - r1 | |
g2 = f2 | |
g3 = sqrt((x - x3)**2 + (y - y3)**2) + z - r3 | |
G = g1,g2,g3 | |
A = solve(F, v) | |
B = solve(G, v) | |
C = solve(G, v, manual=True) | |
p, q, r = [{tuple(i.evalf(2) for i in j) for j in R} for R in [A, B, C]] | |
assert p == q == r | |
def test_issue_2840_8155(): | |
# with parameter-free solutions (i.e. no `n`), we want to avoid | |
# excessive periodic solutions | |
assert solve(sin(3*x) + sin(6*x)) == [0, -2*pi/9, 2*pi/9] | |
assert solve(sin(300*x) + sin(600*x)) == [0, -pi/450, pi/450] | |
assert solve(2*sin(x) - 2*sin(2*x)) == [0, -pi/3, pi/3] | |
def test_issue_9567(): | |
assert solve(1 + 1/(x - 1)) == [0] | |
def test_issue_11538(): | |
assert solve(x + E) == [-E] | |
assert solve(x**2 + E) == [-I*sqrt(E), I*sqrt(E)] | |
assert solve(x**3 + 2*E) == [ | |
-cbrt(2 * E), | |
cbrt(2)*cbrt(E)/2 - cbrt(2)*sqrt(3)*I*cbrt(E)/2, | |
cbrt(2)*cbrt(E)/2 + cbrt(2)*sqrt(3)*I*cbrt(E)/2] | |
assert solve([x + 4, y + E], x, y) == {x: -4, y: -E} | |
assert solve([x**2 + 4, y + E], x, y) == [ | |
(-2*I, -E), (2*I, -E)] | |
e1 = x - y**3 + 4 | |
e2 = x + y + 4 + 4 * E | |
assert len(solve([e1, e2], x, y)) == 3 | |
def test_issue_12114(): | |
a, b, c, d, e, f, g = symbols('a,b,c,d,e,f,g') | |
terms = [1 + a*b + d*e, 1 + a*c + d*f, 1 + b*c + e*f, | |
g - a**2 - d**2, g - b**2 - e**2, g - c**2 - f**2] | |
sol = solve(terms, [a, b, c, d, e, f, g], dict=True) | |
s = sqrt(-f**2 - 1) | |
s2 = sqrt(2 - f**2) | |
s3 = sqrt(6 - 3*f**2) | |
s4 = sqrt(3)*f | |
s5 = sqrt(3)*s2 | |
assert sol == [ | |
{a: -s, b: -s, c: -s, d: f, e: f, g: -1}, | |
{a: s, b: s, c: s, d: f, e: f, g: -1}, | |
{a: -s4/2 - s2/2, b: s4/2 - s2/2, c: s2, | |
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}, | |
{a: -s4/2 + s2/2, b: s4/2 + s2/2, c: -s2, | |
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2}, | |
{a: s4/2 - s2/2, b: -s4/2 - s2/2, c: s2, | |
d: -f/2 - s3/2, e: -f/2 + s5/2, g: 2}, | |
{a: s4/2 + s2/2, b: -s4/2 + s2/2, c: -s2, | |
d: -f/2 + s3/2, e: -f/2 - s5/2, g: 2}] | |
def test_inf(): | |
assert solve(1 - oo*x) == [] | |
assert solve(oo*x, x) == [] | |
assert solve(oo*x - oo, x) == [] | |
def test_issue_12448(): | |
f = Function('f') | |
fun = [f(i) for i in range(15)] | |
sym = symbols('x:15') | |
reps = dict(zip(fun, sym)) | |
(x, y, z), c = sym[:3], sym[3:] | |
ssym = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] | |
for i in range(3)], (x, y, z)) | |
(x, y, z), c = fun[:3], fun[3:] | |
sfun = solve([c[4*i]*x + c[4*i + 1]*y + c[4*i + 2]*z + c[4*i + 3] | |
for i in range(3)], (x, y, z)) | |
assert sfun[fun[0]].xreplace(reps).count_ops() == \ | |
ssym[sym[0]].count_ops() | |
def test_denoms(): | |
assert denoms(x/2 + 1/y) == {2, y} | |
assert denoms(x/2 + 1/y, y) == {y} | |
assert denoms(x/2 + 1/y, [y]) == {y} | |
assert denoms(1/x + 1/y + 1/z, [x, y]) == {x, y} | |
assert denoms(1/x + 1/y + 1/z, x, y) == {x, y} | |
assert denoms(1/x + 1/y + 1/z, {x, y}) == {x, y} | |
def test_issue_12476(): | |
x0, x1, x2, x3, x4, x5 = symbols('x0 x1 x2 x3 x4 x5') | |
eqns = [x0**2 - x0, x0*x1 - x1, x0*x2 - x2, x0*x3 - x3, x0*x4 - x4, x0*x5 - x5, | |
x0*x1 - x1, -x0/3 + x1**2 - 2*x2/3, x1*x2 - x1/3 - x2/3 - x3/3, | |
x1*x3 - x2/3 - x3/3 - x4/3, x1*x4 - 2*x3/3 - x5/3, x1*x5 - x4, x0*x2 - x2, | |
x1*x2 - x1/3 - x2/3 - x3/3, -x0/6 - x1/6 + x2**2 - x2/6 - x3/3 - x4/6, | |
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, x2*x4 - x2/3 - x3/3 - x4/3, | |
x2*x5 - x3, x0*x3 - x3, x1*x3 - x2/3 - x3/3 - x4/3, | |
-x1/6 + x2*x3 - x2/3 - x3/6 - x4/6 - x5/6, | |
-x0/6 - x1/6 - x2/6 + x3**2 - x3/3 - x4/6, -x1/3 - x2/3 + x3*x4 - x3/3, | |
-x2 + x3*x5, x0*x4 - x4, x1*x4 - 2*x3/3 - x5/3, x2*x4 - x2/3 - x3/3 - x4/3, | |
-x1/3 - x2/3 + x3*x4 - x3/3, -x0/3 - 2*x2/3 + x4**2, -x1 + x4*x5, x0*x5 - x5, | |
x1*x5 - x4, x2*x5 - x3, -x2 + x3*x5, -x1 + x4*x5, -x0 + x5**2, x0 - 1] | |
sols = [{x0: 1, x3: Rational(1, 6), x2: Rational(1, 6), x4: Rational(-2, 3), x1: Rational(-2, 3), x5: 1}, | |
{x0: 1, x3: S.Half, x2: Rational(-1, 2), x4: 0, x1: 0, x5: -1}, | |
{x0: 1, x3: Rational(-1, 3), x2: Rational(-1, 3), x4: Rational(1, 3), x1: Rational(1, 3), x5: 1}, | |
{x0: 1, x3: 1, x2: 1, x4: 1, x1: 1, x5: 1}, | |
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: sqrt(5)/3, x1: -sqrt(5)/3, x5: -1}, | |
{x0: 1, x3: Rational(-1, 3), x2: Rational(1, 3), x4: -sqrt(5)/3, x1: sqrt(5)/3, x5: -1}] | |
assert solve(eqns) == sols | |
def test_issue_13849(): | |
t = symbols('t') | |
assert solve((t*(sqrt(5) + sqrt(2)) - sqrt(2), t), t) == [] | |
def test_issue_14860(): | |
from sympy.physics.units import newton, kilo | |
assert solve(8*kilo*newton + x + y, x) == [-8000*newton - y] | |
def test_issue_14721(): | |
k, h, a, b = symbols(':4') | |
assert solve([ | |
-1 + (-k + 1)**2/b**2 + (-h - 1)**2/a**2, | |
-1 + (-k + 1)**2/b**2 + (-h + 1)**2/a**2, | |
h, k + 2], h, k, a, b) == [ | |
(0, -2, -b*sqrt(1/(b**2 - 9)), b), | |
(0, -2, b*sqrt(1/(b**2 - 9)), b)] | |
assert solve([ | |
h, h/a + 1/b**2 - 2, -h/2 + 1/b**2 - 2], a, h, b) == [ | |
(a, 0, -sqrt(2)/2), (a, 0, sqrt(2)/2)] | |
assert solve((a + b**2 - 1, a + b**2 - 2)) == [] | |
def test_issue_14779(): | |
x = symbols('x', real=True) | |
assert solve(sqrt(x**4 - 130*x**2 + 1089) + sqrt(x**4 - 130*x**2 | |
+ 3969) - 96*Abs(x)/x,x) == [sqrt(130)] | |
def test_issue_15307(): | |
assert solve((y - 2, Mul(x + 3,x - 2, evaluate=False))) == \ | |
[{x: -3, y: 2}, {x: 2, y: 2}] | |
assert solve((y - 2, Mul(3, x - 2, evaluate=False))) == \ | |
{x: 2, y: 2} | |
assert solve((y - 2, Add(x + 4, x - 2, evaluate=False))) == \ | |
{x: -1, y: 2} | |
eq1 = Eq(12513*x + 2*y - 219093, -5726*x - y) | |
eq2 = Eq(-2*x + 8, 2*x - 40) | |
assert solve([eq1, eq2]) == {x:12, y:75} | |
def test_issue_15415(): | |
assert solve(x - 3, x) == [3] | |
assert solve([x - 3], x) == {x:3} | |
assert solve(Eq(y + 3*x**2/2, y + 3*x), y) == [] | |
assert solve([Eq(y + 3*x**2/2, y + 3*x)], y) == [] | |
assert solve([Eq(y + 3*x**2/2, y + 3*x), Eq(x, 1)], y) == [] | |
def test_issue_15731(): | |
# f(x)**g(x)=c | |
assert solve(Eq((x**2 - 7*x + 11)**(x**2 - 13*x + 42), 1)) == [2, 3, 4, 5, 6, 7] | |
assert solve((x)**(x + 4) - 4) == [-2] | |
assert solve((-x)**(-x + 4) - 4) == [2] | |
assert solve((x**2 - 6)**(x**2 - 2) - 4) == [-2, 2] | |
assert solve((x**2 - 2*x - 1)**(x**2 - 3) - 1/(1 - 2*sqrt(2))) == [sqrt(2)] | |
assert solve(x**(x + S.Half) - 4*sqrt(2)) == [S(2)] | |
assert solve((x**2 + 1)**x - 25) == [2] | |
assert solve(x**(2/x) - 2) == [2, 4] | |
assert solve((x/2)**(2/x) - sqrt(2)) == [4, 8] | |
assert solve(x**(x + S.Half) - Rational(9, 4)) == [Rational(3, 2)] | |
# a**g(x)=c | |
assert solve((-sqrt(sqrt(2)))**x - 2) == [4, log(2)/(log(2**Rational(1, 4)) + I*pi)] | |
assert solve((sqrt(2))**x - sqrt(sqrt(2))) == [S.Half] | |
assert solve((-sqrt(2))**x + 2*(sqrt(2))) == [3, | |
(3*log(2)**2 + 4*pi**2 - 4*I*pi*log(2))/(log(2)**2 + 4*pi**2)] | |
assert solve((sqrt(2))**x - 2*(sqrt(2))) == [3] | |
assert solve(I**x + 1) == [2] | |
assert solve((1 + I)**x - 2*I) == [2] | |
assert solve((sqrt(2) + sqrt(3))**x - (2*sqrt(6) + 5)**Rational(1, 3)) == [Rational(2, 3)] | |
# bases of both sides are equal | |
b = Symbol('b') | |
assert solve(b**x - b**2, x) == [2] | |
assert solve(b**x - 1/b, x) == [-1] | |
assert solve(b**x - b, x) == [1] | |
b = Symbol('b', positive=True) | |
assert solve(b**x - b**2, x) == [2] | |
assert solve(b**x - 1/b, x) == [-1] | |
def test_issue_10933(): | |
assert solve(x**4 + y*(x + 0.1), x) # doesn't fail | |
assert solve(I*x**4 + x**3 + x**2 + 1.) # doesn't fail | |
def test_Abs_handling(): | |
x = symbols('x', real=True) | |
assert solve(abs(x/y), x) == [0] | |
def test_issue_7982(): | |
x = Symbol('x') | |
# Test that no exception happens | |
assert solve([2*x**2 + 5*x + 20 <= 0, x >= 1.5], x) is S.false | |
# From #8040 | |
assert solve([x**3 - 8.08*x**2 - 56.48*x/5 - 106 >= 0, x - 1 <= 0], [x]) is S.false | |
def test_issue_14645(): | |
x, y = symbols('x y') | |
assert solve([x*y - x - y, x*y - x - y], [x, y]) == [(y/(y - 1), y)] | |
def test_issue_12024(): | |
x, y = symbols('x y') | |
assert solve(Piecewise((0.0, x < 0.1), (x, x >= 0.1)) - y) == \ | |
[{y: Piecewise((0.0, x < 0.1), (x, True))}] | |
def test_issue_17452(): | |
assert solve((7**x)**x + pi, x) == [-sqrt(log(pi) + I*pi)/sqrt(log(7)), | |
sqrt(log(pi) + I*pi)/sqrt(log(7))] | |
assert solve(x**(x/11) + pi/11, x) == [exp(LambertW(-11*log(11) + 11*log(pi) + 11*I*pi))] | |
def test_issue_17799(): | |
assert solve(-erf(x**(S(1)/3))**pi + I, x) == [] | |
def test_issue_17650(): | |
x = Symbol('x', real=True) | |
assert solve(abs(abs(x**2 - 1) - x) - x) == [1, -1 + sqrt(2), 1 + sqrt(2)] | |
def test_issue_17882(): | |
eq = -8*x**2/(9*(x**2 - 1)**(S(4)/3)) + 4/(3*(x**2 - 1)**(S(1)/3)) | |
assert unrad(eq) is None | |
def test_issue_17949(): | |
assert solve(exp(+x+x**2), x) == [] | |
assert solve(exp(-x+x**2), x) == [] | |
assert solve(exp(+x-x**2), x) == [] | |
assert solve(exp(-x-x**2), x) == [] | |
def test_issue_10993(): | |
assert solve(Eq(binomial(x, 2), 3)) == [-2, 3] | |
assert solve(Eq(pow(x, 2) + binomial(x, 3), x)) == [-4, 0, 1] | |
assert solve(Eq(binomial(x, 2), 0)) == [0, 1] | |
assert solve(a+binomial(x, 3), a) == [-binomial(x, 3)] | |
assert solve(x-binomial(a, 3) + binomial(y, 2) + sin(a), x) == [-sin(a) + binomial(a, 3) - binomial(y, 2)] | |
assert solve((x+1)-binomial(x+1, 3), x) == [-2, -1, 3] | |
def test_issue_11553(): | |
eq1 = x + y + 1 | |
eq2 = x + GoldenRatio | |
assert solve([eq1, eq2], x, y) == {x: -GoldenRatio, y: -1 + GoldenRatio} | |
eq3 = x + 2 + TribonacciConstant | |
assert solve([eq1, eq3], x, y) == {x: -2 - TribonacciConstant, y: 1 + TribonacciConstant} | |
def test_issue_19113_19102(): | |
t = S(1)/3 | |
solve(cos(x)**5-sin(x)**5) | |
assert solve(4*cos(x)**3 - 2*sin(x)**3) == [ | |
atan(2**(t)), -atan(2**(t)*(1 - sqrt(3)*I)/2), | |
-atan(2**(t)*(1 + sqrt(3)*I)/2)] | |
h = S.Half | |
assert solve(cos(x)**2 + sin(x)) == [ | |
2*atan(-h + sqrt(5)/2 + sqrt(2)*sqrt(1 - sqrt(5))/2), | |
-2*atan(h + sqrt(5)/2 + sqrt(2)*sqrt(1 + sqrt(5))/2), | |
-2*atan(-sqrt(5)/2 + h + sqrt(2)*sqrt(1 - sqrt(5))/2), | |
-2*atan(-sqrt(2)*sqrt(1 + sqrt(5))/2 + h + sqrt(5)/2)] | |
assert solve(3*cos(x) - sin(x)) == [atan(3)] | |
def test_issue_19509(): | |
a = S(3)/4 | |
b = S(5)/8 | |
c = sqrt(5)/8 | |
d = sqrt(5)/4 | |
assert solve(1/(x -1)**5 - 1) == [2, | |
-d + a - sqrt(-b + c), | |
-d + a + sqrt(-b + c), | |
d + a - sqrt(-b - c), | |
d + a + sqrt(-b - c)] | |
def test_issue_20747(): | |
THT, HT, DBH, dib, c0, c1, c2, c3, c4 = symbols('THT HT DBH dib c0 c1 c2 c3 c4') | |
f = DBH*c3 + THT*c4 + c2 | |
rhs = 1 - ((HT - 1)/(THT - 1))**c1*(1 - exp(c0/f)) | |
eq = dib - DBH*(c0 - f*log(rhs)) | |
term = ((1 - exp((DBH*c0 - dib)/(DBH*(DBH*c3 + THT*c4 + c2)))) | |
/ (1 - exp(c0/(DBH*c3 + THT*c4 + c2)))) | |
sol = [THT*term**(1/c1) - term**(1/c1) + 1] | |
assert solve(eq, HT) == sol | |
def test_issue_20902(): | |
f = (t / ((1 + t) ** 2)) | |
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3) | |
assert solve(f.subs({t: 3 * x + 3}).diff(x) > 0, x) == (S(-4)/3 < x) & (x < S(-2)/3) | |
assert solve(f.subs({t: 3 * x + 4}).diff(x) > 0, x) == (S(-5)/3 < x) & (x < S(-1)) | |
assert solve(f.subs({t: 3 * x + 2}).diff(x) > 0, x) == (S(-1) < x) & (x < S(-1)/3) | |
def test_issue_21034(): | |
a = symbols('a', real=True) | |
system = [x - cosh(cos(4)), y - sinh(cos(a)), z - tanh(x)] | |
# constants inside hyperbolic functions should not be rewritten in terms of exp | |
assert solve(system, x, y, z) == [(cosh(cos(4)), sinh(cos(a)), tanh(cosh(cos(4))))] | |
# but if the variable of interest is present in a hyperbolic function, | |
# then it should be rewritten in terms of exp and solved further | |
newsystem = [(exp(x) - exp(-x)) - tanh(x)*(exp(x) + exp(-x)) + x - 5] | |
assert solve(newsystem, x) == {x: 5} | |
def test_issue_4886(): | |
z = a*sqrt(R**2*a**2 + R**2*b**2 - c**2)/(a**2 + b**2) | |
t = b*c/(a**2 + b**2) | |
sol = [((b*(t - z) - c)/(-a), t - z), ((b*(t + z) - c)/(-a), t + z)] | |
assert solve([x**2 + y**2 - R**2, a*x + b*y - c], x, y) == sol | |
def test_issue_6819(): | |
a, b, c, d = symbols('a b c d', positive=True) | |
assert solve(a*b**x - c*d**x, x) == [log(c/a)/log(b/d)] | |
def test_issue_17454(): | |
x = Symbol('x') | |
assert solve((1 - x - I)**4, x) == [1 - I] | |
def test_issue_21852(): | |
solution = [21 - 21*sqrt(2)/2] | |
assert solve(2*x + sqrt(2*x**2) - 21) == solution | |
def test_issue_21942(): | |
eq = -d + (a*c**(1 - e) + b**(1 - e)*(1 - a))**(1/(1 - e)) | |
sol = solve(eq, c, simplify=False, check=False) | |
assert sol == [((a*b**(1 - e) - b**(1 - e) + | |
d**(1 - e))/a)**(1/(1 - e))] | |
def test_solver_flags(): | |
root = solve(x**5 + x**2 - x - 1, cubics=False) | |
rad = solve(x**5 + x**2 - x - 1, cubics=True) | |
assert root != rad | |
def test_issue_22768(): | |
eq = 2*x**3 - 16*(y - 1)**6*z**3 | |
assert solve(eq.expand(), x, simplify=False | |
) == [2*z*(y - 1)**2, z*(-1 + sqrt(3)*I)*(y - 1)**2, | |
-z*(1 + sqrt(3)*I)*(y - 1)**2] | |
def test_issue_22717(): | |
assert solve((-y**2 + log(y**2/x) + 2, -2*x*y + 2*x/y)) == [ | |
{y: -1, x: E}, {y: 1, x: E}] | |
def test_issue_25176(): | |
eq = (x - 5)**-8 - 3 | |
sol = solve(eq) | |
assert not any(eq.subs(x, i) for i in sol) | |
def test_issue_10169(): | |
eq = S(-8*a - x**5*(a + b + c + e) - x**4*(4*a - 2**Rational(3,4)*c + 4*c + | |
d + 2**Rational(3,4)*e + 4*e + k) - x**3*(-4*2**Rational(3,4)*c + sqrt(2)*c - | |
2**Rational(3,4)*d + 4*d + sqrt(2)*e + 4*2**Rational(3,4)*e + 2**Rational(3,4)*k + 4*k) - | |
x**2*(4*sqrt(2)*c - 4*2**Rational(3,4)*d + sqrt(2)*d + 4*sqrt(2)*e + | |
sqrt(2)*k + 4*2**Rational(3,4)*k) - x*(2*a + 2*b + 4*sqrt(2)*d + | |
4*sqrt(2)*k) + 5) | |
assert solve_undetermined_coeffs(eq, [a, b, c, d, e, k], x) == { | |
a: Rational(5,8), | |
b: Rational(-5,1032), | |
c: Rational(-40,129) - 5*2**Rational(3,4)/129 + 5*2**Rational(1,4)/1032, | |
d: -20*2**Rational(3,4)/129 - 10*sqrt(2)/129 - 5*2**Rational(1,4)/258, | |
e: Rational(-40,129) - 5*2**Rational(1,4)/1032 + 5*2**Rational(3,4)/129, | |
k: -10*sqrt(2)/129 + 5*2**Rational(1,4)/258 + 20*2**Rational(3,4)/129 | |
} | |
def test_solve_undetermined_coeffs_issue_23927(): | |
A, B, r, phi = symbols('A, B, r, phi') | |
e = Eq(A*sin(t) + B*cos(t), r*sin(t - phi)) | |
eq = (e.lhs - e.rhs).expand(trig=True) | |
soln = solve_undetermined_coeffs(eq, (r, phi), t) | |
assert soln == [{ | |
phi: 2*atan((A - sqrt(A**2 + B**2))/B), | |
r: (-A**2 + A*sqrt(A**2 + B**2) - B**2)/(A - sqrt(A**2 + B**2)) | |
}, { | |
phi: 2*atan((A + sqrt(A**2 + B**2))/B), | |
r: (A**2 + A*sqrt(A**2 + B**2) + B**2)/(A + sqrt(A**2 + B**2))/-1 | |
}] | |
def test_issue_24368(): | |
# Ideally these would produce a solution, but for now just check that they | |
# don't fail with a RuntimeError | |
raises(NotImplementedError, lambda: solve(Mod(x**2, 49), x)) | |
s2 = Symbol('s2', integer=True, positive=True) | |
f = floor(s2/2 - S(1)/2) | |
raises(NotImplementedError, lambda: solve((Mod(f**2/(f + 1) + 2*f/(f + 1) + 1/(f + 1), 1))*f + Mod(f**2/(f + 1) + 2*f/(f + 1) + 1/(f + 1), 1), s2)) | |
def test_solve_Piecewise(): | |
assert [S(10)/3] == solve(3*Piecewise( | |
(S.NaN, x <= 0), | |
(20*x - 3*(x - 6)**2/2 - 176, (x >= 0) & (x >= 2) & (x>= 4) & (x >= 6) & (x < 10)), | |
(100 - 26*x, (x >= 0) & (x >= 2) & (x >= 4) & (x < 10)), | |
(16*x - 3*(x - 6)**2/2 - 176, (x >= 2) & (x >= 4) & (x >= 6) & (x < 10)), | |
(100 - 30*x, (x >= 2) & (x >= 4) & (x < 10)), | |
(30*x - 3*(x - 6)**2/2 - 196, (x>= 0) & (x >= 4) & (x >= 6) & (x < 10)), | |
(80 - 16*x, (x >= 0) & (x >= 4) & (x < 10)), | |
(26*x - 3*(x - 6)**2/2 - 196, (x >= 4) & (x >= 6) & (x < 10)), | |
(80 - 20*x, (x >= 4) & (x < 10)), | |
(40*x - 3*(x - 6)**2/2 - 256, (x >= 0) & (x >= 2) & (x >= 6) & (x < 10)), | |
(20 - 6*x, (x >= 0) & (x >= 2) & (x < 10)), | |
(36*x - 3*(x - 6)**2/2 - 256, (x >= 2) & (x >= 6) & (x < 10)), | |
(20 - 10*x, (x >= 2) & (x < 10)), | |
(50*x - 3*(x - 6)**2/2 - 276, (x >= 0) & (x >= 6) & (x < 10)), | |
(4*x, (x >= 0) & (x < 10)), | |
(46*x - 3*(x - 6)**2/2 - 276, (x >= 6) & (x < 10)), | |
(0, x < 10), # this will simplify away | |
(S.NaN,True))) | |