Spaces:
Running
Running
from sympy.testing.pytest import raises | |
from sympy.polys.polymatrix import PolyMatrix | |
from sympy.polys import Poly | |
from sympy.core.singleton import S | |
from sympy.matrices.dense import Matrix | |
from sympy.polys.domains.integerring import ZZ | |
from sympy.polys.domains.rationalfield import QQ | |
from sympy.abc import x, y | |
def _test_polymatrix(): | |
pm1 = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(x**3, x), Poly(-1 + x, x)]]) | |
v1 = PolyMatrix([[1, 0], [-1, 0]], ring='ZZ[x]') | |
m1 = PolyMatrix([[1, 0], [-1, 0]], ring='ZZ[x]') | |
A = PolyMatrix([[Poly(x**2 + x, x), Poly(0, x)], \ | |
[Poly(x**3 - x + 1, x), Poly(0, x)]]) | |
B = PolyMatrix([[Poly(x**2, x), Poly(-x, x)], [Poly(-x**2, x), Poly(x, x)]]) | |
assert A.ring == ZZ[x] | |
assert isinstance(pm1*v1, PolyMatrix) | |
assert pm1*v1 == A | |
assert pm1*m1 == A | |
assert v1*pm1 == B | |
pm2 = PolyMatrix([[Poly(x**2, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**2, x, domain='QQ'), \ | |
Poly(x**3, x, domain='QQ'), Poly(0, x, domain='QQ'), Poly(-x**3, x, domain='QQ')]]) | |
assert pm2.ring == QQ[x] | |
v2 = PolyMatrix([1, 0, 0, 0, 0, 0], ring='ZZ[x]') | |
m2 = PolyMatrix([1, 0, 0, 0, 0, 0], ring='ZZ[x]') | |
C = PolyMatrix([[Poly(x**2, x, domain='QQ')]]) | |
assert pm2*v2 == C | |
assert pm2*m2 == C | |
pm3 = PolyMatrix([[Poly(x**2, x), S.One]], ring='ZZ[x]') | |
v3 = S.Half*pm3 | |
assert v3 == PolyMatrix([[Poly(S.Half*x**2, x, domain='QQ'), S.Half]], ring='QQ[x]') | |
assert pm3*S.Half == v3 | |
assert v3.ring == QQ[x] | |
pm4 = PolyMatrix([[Poly(x**2, x, domain='ZZ'), Poly(-x**2, x, domain='ZZ')]]) | |
v4 = PolyMatrix([1, -1], ring='ZZ[x]') | |
assert pm4*v4 == PolyMatrix([[Poly(2*x**2, x, domain='ZZ')]]) | |
assert len(PolyMatrix(ring=ZZ[x])) == 0 | |
assert PolyMatrix([1, 0, 0, 1], x)/(-1) == PolyMatrix([-1, 0, 0, -1], x) | |
def test_polymatrix_constructor(): | |
M1 = PolyMatrix([[x, y]], ring=QQ[x,y]) | |
assert M1.ring == QQ[x,y] | |
assert M1.domain == QQ | |
assert M1.gens == (x, y) | |
assert M1.shape == (1, 2) | |
assert M1.rows == 1 | |
assert M1.cols == 2 | |
assert len(M1) == 2 | |
assert list(M1) == [Poly(x, (x, y), domain=QQ), Poly(y, (x, y), domain=QQ)] | |
M2 = PolyMatrix([[x, y]], ring=QQ[x][y]) | |
assert M2.ring == QQ[x][y] | |
assert M2.domain == QQ[x] | |
assert M2.gens == (y,) | |
assert M2.shape == (1, 2) | |
assert M2.rows == 1 | |
assert M2.cols == 2 | |
assert len(M2) == 2 | |
assert list(M2) == [Poly(x, (y,), domain=QQ[x]), Poly(y, (y,), domain=QQ[x])] | |
assert PolyMatrix([[x, y]], y) == PolyMatrix([[x, y]], ring=ZZ.frac_field(x)[y]) | |
assert PolyMatrix([[x, y]], ring='ZZ[x,y]') == PolyMatrix([[x, y]], ring=ZZ[x,y]) | |
assert PolyMatrix([[x, y]], (x, y)) == PolyMatrix([[x, y]], ring=QQ[x,y]) | |
assert PolyMatrix([[x, y]], x, y) == PolyMatrix([[x, y]], ring=QQ[x,y]) | |
assert PolyMatrix([x, y]) == PolyMatrix([[x], [y]], ring=QQ[x,y]) | |
assert PolyMatrix(1, 2, [x, y]) == PolyMatrix([[x, y]], ring=QQ[x,y]) | |
assert PolyMatrix(1, 2, lambda i,j: [x,y][j]) == PolyMatrix([[x, y]], ring=QQ[x,y]) | |
assert PolyMatrix(0, 2, [], x, y).shape == (0, 2) | |
assert PolyMatrix(2, 0, [], x, y).shape == (2, 0) | |
assert PolyMatrix([[], []], x, y).shape == (2, 0) | |
assert PolyMatrix(ring=QQ[x,y]) == PolyMatrix(0, 0, [], ring=QQ[x,y]) == PolyMatrix([], ring=QQ[x,y]) | |
raises(TypeError, lambda: PolyMatrix()) | |
raises(TypeError, lambda: PolyMatrix(1)) | |
assert PolyMatrix([Poly(x), Poly(y)]) == PolyMatrix([[x], [y]], ring=ZZ[x,y]) | |
# XXX: Maybe a bug in parallel_poly_from_expr (x lost from gens and domain): | |
assert PolyMatrix([Poly(y, x), 1]) == PolyMatrix([[y], [1]], ring=QQ[y]) | |
def test_polymatrix_eq(): | |
assert (PolyMatrix([x]) == PolyMatrix([x])) is True | |
assert (PolyMatrix([y]) == PolyMatrix([x])) is False | |
assert (PolyMatrix([x]) != PolyMatrix([x])) is False | |
assert (PolyMatrix([y]) != PolyMatrix([x])) is True | |
assert PolyMatrix([[x, y]]) != PolyMatrix([x, y]) == PolyMatrix([[x], [y]]) | |
assert PolyMatrix([x], ring=QQ[x]) != PolyMatrix([x], ring=ZZ[x]) | |
assert PolyMatrix([x]) != Matrix([x]) | |
assert PolyMatrix([x]).to_Matrix() == Matrix([x]) | |
assert PolyMatrix([1], x) == PolyMatrix([1], x) | |
assert PolyMatrix([1], x) != PolyMatrix([1], y) | |
def test_polymatrix_from_Matrix(): | |
assert PolyMatrix.from_Matrix(Matrix([1, 2]), x) == PolyMatrix([1, 2], x, ring=QQ[x]) | |
assert PolyMatrix.from_Matrix(Matrix([1]), ring=QQ[x]) == PolyMatrix([1], x) | |
pmx = PolyMatrix([1, 2], x) | |
pmy = PolyMatrix([1, 2], y) | |
assert pmx != pmy | |
assert pmx.set_gens(y) == pmy | |
def test_polymatrix_repr(): | |
assert repr(PolyMatrix([[1, 2]], x)) == 'PolyMatrix([[1, 2]], ring=QQ[x])' | |
assert repr(PolyMatrix(0, 2, [], x)) == 'PolyMatrix(0, 2, [], ring=QQ[x])' | |
def test_polymatrix_getitem(): | |
M = PolyMatrix([[1, 2], [3, 4]], x) | |
assert M[:, :] == M | |
assert M[0, :] == PolyMatrix([[1, 2]], x) | |
assert M[:, 0] == PolyMatrix([1, 3], x) | |
assert M[0, 0] == Poly(1, x, domain=QQ) | |
assert M[0] == Poly(1, x, domain=QQ) | |
assert M[:2] == [Poly(1, x, domain=QQ), Poly(2, x, domain=QQ)] | |
def test_polymatrix_arithmetic(): | |
M = PolyMatrix([[1, 2], [3, 4]], x) | |
assert M + M == PolyMatrix([[2, 4], [6, 8]], x) | |
assert M - M == PolyMatrix([[0, 0], [0, 0]], x) | |
assert -M == PolyMatrix([[-1, -2], [-3, -4]], x) | |
raises(TypeError, lambda: M + 1) | |
raises(TypeError, lambda: M - 1) | |
raises(TypeError, lambda: 1 + M) | |
raises(TypeError, lambda: 1 - M) | |
assert M * M == PolyMatrix([[7, 10], [15, 22]], x) | |
assert 2 * M == PolyMatrix([[2, 4], [6, 8]], x) | |
assert M * 2 == PolyMatrix([[2, 4], [6, 8]], x) | |
assert S(2) * M == PolyMatrix([[2, 4], [6, 8]], x) | |
assert M * S(2) == PolyMatrix([[2, 4], [6, 8]], x) | |
raises(TypeError, lambda: [] * M) | |
raises(TypeError, lambda: M * []) | |
M2 = PolyMatrix([[1, 2]], ring=ZZ[x]) | |
assert S.Half * M2 == PolyMatrix([[S.Half, 1]], ring=QQ[x]) | |
assert M2 * S.Half == PolyMatrix([[S.Half, 1]], ring=QQ[x]) | |
assert M / 2 == PolyMatrix([[S(1)/2, 1], [S(3)/2, 2]], x) | |
assert M / Poly(2, x) == PolyMatrix([[S(1)/2, 1], [S(3)/2, 2]], x) | |
raises(TypeError, lambda: M / []) | |
def test_polymatrix_manipulations(): | |
M1 = PolyMatrix([[1, 2], [3, 4]], x) | |
assert M1.transpose() == PolyMatrix([[1, 3], [2, 4]], x) | |
M2 = PolyMatrix([[5, 6], [7, 8]], x) | |
assert M1.row_join(M2) == PolyMatrix([[1, 2, 5, 6], [3, 4, 7, 8]], x) | |
assert M1.col_join(M2) == PolyMatrix([[1, 2], [3, 4], [5, 6], [7, 8]], x) | |
assert M1.applyfunc(lambda e: 2*e) == PolyMatrix([[2, 4], [6, 8]], x) | |
def test_polymatrix_ones_zeros(): | |
assert PolyMatrix.zeros(1, 2, x) == PolyMatrix([[0, 0]], x) | |
assert PolyMatrix.eye(2, x) == PolyMatrix([[1, 0], [0, 1]], x) | |
def test_polymatrix_rref(): | |
M = PolyMatrix([[1, 2], [3, 4]], x) | |
assert M.rref() == (PolyMatrix.eye(2, x), (0, 1)) | |
raises(ValueError, lambda: PolyMatrix([1, 2], ring=ZZ[x]).rref()) | |
raises(ValueError, lambda: PolyMatrix([1, x], ring=QQ[x]).rref()) | |
def test_polymatrix_nullspace(): | |
M = PolyMatrix([[1, 2], [3, 6]], x) | |
assert M.nullspace() == [PolyMatrix([-2, 1], x)] | |
raises(ValueError, lambda: PolyMatrix([1, 2], ring=ZZ[x]).nullspace()) | |
raises(ValueError, lambda: PolyMatrix([1, x], ring=QQ[x]).nullspace()) | |
assert M.rank() == 1 | |