Spaces:
Running
Running
"""Tests for OO layer of several polynomial representations. """ | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.polys.domains import ZZ, QQ | |
from sympy.polys.polyclasses import DMP, DMF, ANP | |
from sympy.polys.polyerrors import (CoercionFailed, ExactQuotientFailed, | |
NotInvertible) | |
from sympy.polys.specialpolys import f_polys | |
from sympy.testing.pytest import raises, warns_deprecated_sympy | |
f_0, f_1, f_2, f_3, f_4, f_5, f_6 = [ f.to_dense() for f in f_polys() ] | |
def test_DMP___init__(): | |
f = DMP([[ZZ(0)], [], [ZZ(0), ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) | |
assert f._rep == [[1, 2], [3]] | |
assert f.dom == ZZ | |
assert f.lev == 1 | |
f = DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ, 1) | |
assert f._rep == [[1, 2], [3]] | |
assert f.dom == ZZ | |
assert f.lev == 1 | |
f = DMP.from_dict({(1, 1): ZZ(1), (0, 0): ZZ(2)}, 1, ZZ) | |
assert f._rep == [[1, 0], [2]] | |
assert f.dom == ZZ | |
assert f.lev == 1 | |
def test_DMP_rep_deprecation(): | |
f = DMP([1, 2, 3], ZZ) | |
with warns_deprecated_sympy(): | |
assert f.rep == [1, 2, 3] | |
def test_DMP___eq__(): | |
assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ | |
DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) | |
assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) == \ | |
DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) | |
assert DMP([[QQ(1), QQ(2)], [QQ(3)]], QQ) == \ | |
DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ) | |
assert DMP([[[ZZ(1)]]], ZZ) != DMP([[ZZ(1)]], ZZ) | |
assert DMP([[ZZ(1)]], ZZ) != DMP([[[ZZ(1)]]], ZZ) | |
def test_DMP___bool__(): | |
assert bool(DMP([[]], ZZ)) is False | |
assert bool(DMP([[ZZ(1)]], ZZ)) is True | |
def test_DMP_to_dict(): | |
f = DMP([[ZZ(3)], [], [ZZ(2)], [], [ZZ(8)]], ZZ) | |
assert f.to_dict() == \ | |
{(4, 0): 3, (2, 0): 2, (0, 0): 8} | |
assert f.to_sympy_dict() == \ | |
{(4, 0): ZZ.to_sympy(3), (2, 0): ZZ.to_sympy(2), (0, 0): | |
ZZ.to_sympy(8)} | |
def test_DMP_properties(): | |
assert DMP([[]], ZZ).is_zero is True | |
assert DMP([[ZZ(1)]], ZZ).is_zero is False | |
assert DMP([[ZZ(1)]], ZZ).is_one is True | |
assert DMP([[ZZ(2)]], ZZ).is_one is False | |
assert DMP([[ZZ(1)]], ZZ).is_ground is True | |
assert DMP([[ZZ(1)], [ZZ(2)], [ZZ(1)]], ZZ).is_ground is False | |
assert DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0)]], ZZ).is_sqf is True | |
assert DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0), ZZ(0)]], ZZ).is_sqf is False | |
assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ).is_monic is True | |
assert DMP([[ZZ(2), ZZ(2)], [ZZ(3)]], ZZ).is_monic is False | |
assert DMP([[ZZ(1), ZZ(2)], [ZZ(3)]], ZZ).is_primitive is True | |
assert DMP([[ZZ(2), ZZ(4)], [ZZ(6)]], ZZ).is_primitive is False | |
def test_DMP_arithmetics(): | |
f = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) | |
assert f.mul_ground(2) == DMP([[ZZ(4)], [ZZ(4), ZZ(0)]], ZZ) | |
assert f.quo_ground(2) == DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) | |
raises(ExactQuotientFailed, lambda: f.exquo_ground(3)) | |
f = DMP([[ZZ(-5)]], ZZ) | |
g = DMP([[ZZ(5)]], ZZ) | |
assert f.abs() == g | |
assert abs(f) == g | |
assert g.neg() == f | |
assert -g == f | |
h = DMP([[]], ZZ) | |
assert f.add(g) == h | |
assert f + g == h | |
assert g + f == h | |
assert f + 5 == h | |
assert 5 + f == h | |
h = DMP([[ZZ(-10)]], ZZ) | |
assert f.sub(g) == h | |
assert f - g == h | |
assert g - f == -h | |
assert f - 5 == h | |
assert 5 - f == -h | |
h = DMP([[ZZ(-25)]], ZZ) | |
assert f.mul(g) == h | |
assert f * g == h | |
assert g * f == h | |
assert f * 5 == h | |
assert 5 * f == h | |
h = DMP([[ZZ(25)]], ZZ) | |
assert f.sqr() == h | |
assert f.pow(2) == h | |
assert f**2 == h | |
raises(TypeError, lambda: f.pow('x')) | |
f = DMP([[ZZ(1)], [], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) | |
g = DMP([[ZZ(2)], [ZZ(-2), ZZ(0)]], ZZ) | |
q = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) | |
r = DMP([[ZZ(8), ZZ(0), ZZ(0)]], ZZ) | |
assert f.pdiv(g) == (q, r) | |
assert f.pquo(g) == q | |
assert f.prem(g) == r | |
raises(ExactQuotientFailed, lambda: f.pexquo(g)) | |
f = DMP([[ZZ(1)], [], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) | |
g = DMP([[ZZ(1)], [ZZ(-1), ZZ(0)]], ZZ) | |
q = DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) | |
r = DMP([[ZZ(2), ZZ(0), ZZ(0)]], ZZ) | |
assert f.div(g) == (q, r) | |
assert f.quo(g) == q | |
assert f.rem(g) == r | |
assert divmod(f, g) == (q, r) | |
assert f // g == q | |
assert f % g == r | |
raises(ExactQuotientFailed, lambda: f.exquo(g)) | |
f = DMP([ZZ(1), ZZ(0), ZZ(-1)], ZZ) | |
g = DMP([ZZ(2), ZZ(-2)], ZZ) | |
q = DMP([], ZZ) | |
r = f | |
pq = DMP([ZZ(2), ZZ(2)], ZZ) | |
pr = DMP([], ZZ) | |
assert f.div(g) == (q, r) | |
assert f.quo(g) == q | |
assert f.rem(g) == r | |
assert divmod(f, g) == (q, r) | |
assert f // g == q | |
assert f % g == r | |
raises(ExactQuotientFailed, lambda: f.exquo(g)) | |
assert f.pdiv(g) == (pq, pr) | |
assert f.pquo(g) == pq | |
assert f.prem(g) == pr | |
assert f.pexquo(g) == pq | |
def test_DMP_functionality(): | |
f = DMP([[ZZ(1)], [ZZ(2), ZZ(0)], [ZZ(1), ZZ(0), ZZ(0)]], ZZ) | |
g = DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ) | |
h = DMP([[ZZ(1)]], ZZ) | |
assert f.degree() == 2 | |
assert f.degree_list() == (2, 2) | |
assert f.total_degree() == 2 | |
assert f.LC() == ZZ(1) | |
assert f.TC() == ZZ(0) | |
assert f.nth(1, 1) == ZZ(2) | |
raises(TypeError, lambda: f.nth(0, 'x')) | |
assert f.max_norm() == 2 | |
assert f.l1_norm() == 4 | |
u = DMP([[ZZ(2)], [ZZ(2), ZZ(0)]], ZZ) | |
assert f.diff(m=1, j=0) == u | |
assert f.diff(m=1, j=1) == u | |
raises(TypeError, lambda: f.diff(m='x', j=0)) | |
u = DMP([ZZ(1), ZZ(2), ZZ(1)], ZZ) | |
v = DMP([ZZ(1), ZZ(2), ZZ(1)], ZZ) | |
assert f.eval(a=1, j=0) == u | |
assert f.eval(a=1, j=1) == v | |
assert f.eval(1).eval(1) == ZZ(4) | |
assert f.cofactors(g) == (g, g, h) | |
assert f.gcd(g) == g | |
assert f.lcm(g) == f | |
u = DMP([[QQ(45), QQ(30), QQ(5)]], QQ) | |
v = DMP([[QQ(1), QQ(2, 3), QQ(1, 9)]], QQ) | |
assert u.monic() == v | |
assert (4*f).content() == ZZ(4) | |
assert (4*f).primitive() == (ZZ(4), f) | |
f = DMP([QQ(1,3), QQ(1)], QQ) | |
g = DMP([QQ(1,7), QQ(1)], QQ) | |
assert f.cancel(g) == f.cancel(g, include=True) == ( | |
DMP([QQ(7), QQ(21)], QQ), | |
DMP([QQ(3), QQ(21)], QQ) | |
) | |
assert f.cancel(g, include=False) == ( | |
QQ(7), | |
QQ(3), | |
DMP([QQ(1), QQ(3)], QQ), | |
DMP([QQ(1), QQ(7)], QQ) | |
) | |
f = DMP([[ZZ(1)], [ZZ(2)], [ZZ(3)], [ZZ(4)], [ZZ(5)], [ZZ(6)]], ZZ) | |
assert f.trunc(3) == DMP([[ZZ(1)], [ZZ(-1)], [], [ZZ(1)], [ZZ(-1)], []], ZZ) | |
f = DMP(f_4, ZZ) | |
assert f.sqf_part() == -f | |
assert f.sqf_list() == (ZZ(-1), [(-f, 1)]) | |
f = DMP([[ZZ(-1)], [], [], [ZZ(5)]], ZZ) | |
g = DMP([[ZZ(3), ZZ(1)], [], []], ZZ) | |
h = DMP([[ZZ(45), ZZ(30), ZZ(5)]], ZZ) | |
r = DMP([ZZ(675), ZZ(675), ZZ(225), ZZ(25)], ZZ) | |
assert f.subresultants(g) == [f, g, h] | |
assert f.resultant(g) == r | |
f = DMP([ZZ(1), ZZ(3), ZZ(9), ZZ(-13)], ZZ) | |
assert f.discriminant() == -11664 | |
f = DMP([QQ(2), QQ(0)], QQ) | |
g = DMP([QQ(1), QQ(0), QQ(-16)], QQ) | |
s = DMP([QQ(1, 32), QQ(0)], QQ) | |
t = DMP([QQ(-1, 16)], QQ) | |
h = DMP([QQ(1)], QQ) | |
assert f.half_gcdex(g) == (s, h) | |
assert f.gcdex(g) == (s, t, h) | |
assert f.invert(g) == s | |
f = DMP([[QQ(1)], [QQ(2)], [QQ(3)]], QQ) | |
raises(ValueError, lambda: f.half_gcdex(f)) | |
raises(ValueError, lambda: f.gcdex(f)) | |
raises(ValueError, lambda: f.invert(f)) | |
f = DMP(ZZ.map([1, 0, 20, 0, 150, 0, 500, 0, 625, -2, 0, -10, 9]), ZZ) | |
g = DMP([ZZ(1), ZZ(0), ZZ(0), ZZ(-2), ZZ(9)], ZZ) | |
h = DMP([ZZ(1), ZZ(0), ZZ(5), ZZ(0)], ZZ) | |
assert g.compose(h) == f | |
assert f.decompose() == [g, h] | |
f = DMP([[QQ(1)], [QQ(2)], [QQ(3)]], QQ) | |
raises(ValueError, lambda: f.decompose()) | |
raises(ValueError, lambda: f.sturm()) | |
def test_DMP_exclude(): | |
f = [[[[[[[[[[[[[[[[[[[[[[[[[[ZZ(1)]], [[]]]]]]]]]]]]]]]]]]]]]]]]]] | |
J = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, | |
18, 19, 20, 21, 22, 24, 25] | |
assert DMP(f, ZZ).exclude() == (J, DMP([ZZ(1), ZZ(0)], ZZ)) | |
assert DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ).exclude() ==\ | |
([], DMP([[ZZ(1)], [ZZ(1), ZZ(0)]], ZZ)) | |
def test_DMF__init__(): | |
f = DMF(([[0], [], [0, 1, 2], [3]], [[1, 2, 3]]), ZZ) | |
assert f.num == [[1, 2], [3]] | |
assert f.den == [[1, 2, 3]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[1, 2], [3]], [[1, 2, 3]]), ZZ, 1) | |
assert f.num == [[1, 2], [3]] | |
assert f.den == [[1, 2, 3]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[-1], [-2]], [[3], [-4]]), ZZ) | |
assert f.num == [[-1], [-2]] | |
assert f.den == [[3], [-4]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[1], [2]], [[-3], [4]]), ZZ) | |
assert f.num == [[-1], [-2]] | |
assert f.den == [[3], [-4]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[1], [2]], [[-3], [4]]), ZZ) | |
assert f.num == [[-1], [-2]] | |
assert f.den == [[3], [-4]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[]], [[-3], [4]]), ZZ) | |
assert f.num == [[]] | |
assert f.den == [[1]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(17, ZZ, 1) | |
assert f.num == [[17]] | |
assert f.den == [[1]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[1], [2]]), ZZ) | |
assert f.num == [[1], [2]] | |
assert f.den == [[1]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF([[0], [], [0, 1, 2], [3]], ZZ) | |
assert f.num == [[1, 2], [3]] | |
assert f.den == [[1]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF({(1, 1): 1, (0, 0): 2}, ZZ, 1) | |
assert f.num == [[1, 0], [2]] | |
assert f.den == [[1]] | |
assert f.lev == 1 | |
assert f.dom == ZZ | |
f = DMF(([[QQ(1)], [QQ(2)]], [[-QQ(3)], [QQ(4)]]), QQ) | |
assert f.num == [[-QQ(1)], [-QQ(2)]] | |
assert f.den == [[QQ(3)], [-QQ(4)]] | |
assert f.lev == 1 | |
assert f.dom == QQ | |
f = DMF(([[QQ(1, 5)], [QQ(2, 5)]], [[-QQ(3, 7)], [QQ(4, 7)]]), QQ) | |
assert f.num == [[-QQ(7)], [-QQ(14)]] | |
assert f.den == [[QQ(15)], [-QQ(20)]] | |
assert f.lev == 1 | |
assert f.dom == QQ | |
raises(ValueError, lambda: DMF(([1], [[1]]), ZZ)) | |
raises(ZeroDivisionError, lambda: DMF(([1], []), ZZ)) | |
def test_DMF__bool__(): | |
assert bool(DMF([[]], ZZ)) is False | |
assert bool(DMF([[1]], ZZ)) is True | |
def test_DMF_properties(): | |
assert DMF([[]], ZZ).is_zero is True | |
assert DMF([[]], ZZ).is_one is False | |
assert DMF([[1]], ZZ).is_zero is False | |
assert DMF([[1]], ZZ).is_one is True | |
assert DMF(([[1]], [[2]]), ZZ).is_one is False | |
def test_DMF_arithmetics(): | |
f = DMF([[7], [-9]], ZZ) | |
g = DMF([[-7], [9]], ZZ) | |
assert f.neg() == -f == g | |
f = DMF(([[1]], [[1], []]), ZZ) | |
g = DMF(([[1]], [[1, 0]]), ZZ) | |
h = DMF(([[1], [1, 0]], [[1, 0], []]), ZZ) | |
assert f.add(g) == f + g == h | |
assert g.add(f) == g + f == h | |
h = DMF(([[-1], [1, 0]], [[1, 0], []]), ZZ) | |
assert f.sub(g) == f - g == h | |
h = DMF(([[1]], [[1, 0], []]), ZZ) | |
assert f.mul(g) == f*g == h | |
assert g.mul(f) == g*f == h | |
h = DMF(([[1, 0]], [[1], []]), ZZ) | |
assert f.quo(g) == f/g == h | |
h = DMF(([[1]], [[1], [], [], []]), ZZ) | |
assert f.pow(3) == f**3 == h | |
h = DMF(([[1]], [[1, 0, 0, 0]]), ZZ) | |
assert g.pow(3) == g**3 == h | |
h = DMF(([[1, 0]], [[1]]), ZZ) | |
assert g.pow(-1) == g**-1 == h | |
def test_ANP___init__(): | |
rep = [QQ(1), QQ(1)] | |
mod = [QQ(1), QQ(0), QQ(1)] | |
f = ANP(rep, mod, QQ) | |
assert f.to_list() == [QQ(1), QQ(1)] | |
assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] | |
assert f.dom == QQ | |
rep = {1: QQ(1), 0: QQ(1)} | |
mod = {2: QQ(1), 0: QQ(1)} | |
f = ANP(rep, mod, QQ) | |
assert f.to_list() == [QQ(1), QQ(1)] | |
assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] | |
assert f.dom == QQ | |
f = ANP(1, mod, QQ) | |
assert f.to_list() == [QQ(1)] | |
assert f.mod_to_list() == [QQ(1), QQ(0), QQ(1)] | |
assert f.dom == QQ | |
f = ANP([1, 0.5], mod, QQ) | |
assert all(QQ.of_type(a) for a in f.to_list()) | |
raises(CoercionFailed, lambda: ANP([sqrt(2)], mod, QQ)) | |
def test_ANP___eq__(): | |
a = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ) | |
b = ANP([QQ(1), QQ(1)], [QQ(1), QQ(0), QQ(2)], QQ) | |
assert (a == a) is True | |
assert (a != a) is False | |
assert (a == b) is False | |
assert (a != b) is True | |
b = ANP([QQ(1), QQ(2)], [QQ(1), QQ(0), QQ(1)], QQ) | |
assert (a == b) is False | |
assert (a != b) is True | |
def test_ANP___bool__(): | |
assert bool(ANP([], [QQ(1), QQ(0), QQ(1)], QQ)) is False | |
assert bool(ANP([QQ(1)], [QQ(1), QQ(0), QQ(1)], QQ)) is True | |
def test_ANP_properties(): | |
mod = [QQ(1), QQ(0), QQ(1)] | |
assert ANP([QQ(0)], mod, QQ).is_zero is True | |
assert ANP([QQ(1)], mod, QQ).is_zero is False | |
assert ANP([QQ(1)], mod, QQ).is_one is True | |
assert ANP([QQ(2)], mod, QQ).is_one is False | |
def test_ANP_arithmetics(): | |
mod = [QQ(1), QQ(0), QQ(0), QQ(-2)] | |
a = ANP([QQ(2), QQ(-1), QQ(1)], mod, QQ) | |
b = ANP([QQ(1), QQ(2)], mod, QQ) | |
c = ANP([QQ(-2), QQ(1), QQ(-1)], mod, QQ) | |
assert a.neg() == -a == c | |
c = ANP([QQ(2), QQ(0), QQ(3)], mod, QQ) | |
assert a.add(b) == a + b == c | |
assert b.add(a) == b + a == c | |
c = ANP([QQ(2), QQ(-2), QQ(-1)], mod, QQ) | |
assert a.sub(b) == a - b == c | |
c = ANP([QQ(-2), QQ(2), QQ(1)], mod, QQ) | |
assert b.sub(a) == b - a == c | |
c = ANP([QQ(3), QQ(-1), QQ(6)], mod, QQ) | |
assert a.mul(b) == a*b == c | |
assert b.mul(a) == b*a == c | |
c = ANP([QQ(-1, 43), QQ(9, 43), QQ(5, 43)], mod, QQ) | |
assert a.pow(0) == a**(0) == ANP(1, mod, QQ) | |
assert a.pow(1) == a**(1) == a | |
assert a.pow(-1) == a**(-1) == c | |
assert a.quo(a) == a.mul(a.pow(-1)) == a*a**(-1) == ANP(1, mod, QQ) | |
c = ANP([], [1, 0, 0, -2], QQ) | |
r1 = a.rem(b) | |
(q, r2) = a.div(b) | |
assert r1 == r2 == c == a % b | |
raises(NotInvertible, lambda: a.div(c)) | |
raises(NotInvertible, lambda: a.rem(c)) | |
# Comparison with "hard-coded" value fails despite looking identical | |
# from sympy import Rational | |
# c = ANP([Rational(11, 10), Rational(-1, 5), Rational(-3, 5)], [1, 0, 0, -2], QQ) | |
assert q == a/b # == c | |
def test_ANP_unify(): | |
mod_z = [ZZ(1), ZZ(0), ZZ(-2)] | |
mod_q = [QQ(1), QQ(0), QQ(-2)] | |
a = ANP([QQ(1)], mod_q, QQ) | |
b = ANP([ZZ(1)], mod_z, ZZ) | |
assert a.unify(b)[0] == QQ | |
assert b.unify(a)[0] == QQ | |
assert a.unify(a)[0] == QQ | |
assert b.unify(b)[0] == ZZ | |
assert a.unify_ANP(b)[-1] == QQ | |
assert b.unify_ANP(a)[-1] == QQ | |
assert a.unify_ANP(a)[-1] == QQ | |
assert b.unify_ANP(b)[-1] == ZZ | |