Spaces:
Running
Running
from sympy.polys.rings import ring | |
from sympy.polys.domains import ZZ | |
from sympy.polys.heuristicgcd import heugcd | |
def test_heugcd_univariate_integers(): | |
R, x = ring("x", ZZ) | |
f = x**4 + 8*x**3 + 21*x**2 + 22*x + 8 | |
g = x**3 + 6*x**2 + 11*x + 6 | |
h = x**2 + 3*x + 2 | |
cff = x**2 + 5*x + 4 | |
cfg = x + 3 | |
assert heugcd(f, g) == (h, cff, cfg) | |
f = x**4 - 4 | |
g = x**4 + 4*x**2 + 4 | |
h = x**2 + 2 | |
cff = x**2 - 2 | |
cfg = x**2 + 2 | |
assert heugcd(f, g) == (h, cff, cfg) | |
f = x**8 + x**6 - 3*x**4 - 3*x**3 + 8*x**2 + 2*x - 5 | |
g = 3*x**6 + 5*x**4 - 4*x**2 - 9*x + 21 | |
h = 1 | |
cff = f | |
cfg = g | |
assert heugcd(f, g) == (h, cff, cfg) | |
f = - 352518131239247345597970242177235495263669787845475025293906825864749649589178600387510272*x**49 \ | |
+ 46818041807522713962450042363465092040687472354933295397472942006618953623327997952*x**42 \ | |
+ 378182690892293941192071663536490788434899030680411695933646320291525827756032*x**35 \ | |
+ 112806468807371824947796775491032386836656074179286744191026149539708928*x**28 \ | |
- 12278371209708240950316872681744825481125965781519138077173235712*x**21 \ | |
+ 289127344604779611146960547954288113529690984687482920704*x**14 \ | |
+ 19007977035740498977629742919480623972236450681*x**7 \ | |
+ 311973482284542371301330321821976049 | |
g = 365431878023781158602430064717380211405897160759702125019136*x**21 \ | |
+ 197599133478719444145775798221171663643171734081650688*x**14 \ | |
- 9504116979659010018253915765478924103928886144*x**7 \ | |
- 311973482284542371301330321821976049 | |
# TODO: assert heugcd(f, f.diff(x))[0] == g | |
f = 1317378933230047068160*x + 2945748836994210856960 | |
g = 120352542776360960*x + 269116466014453760 | |
h = 120352542776360960*x + 269116466014453760 | |
cff = 10946 | |
cfg = 1 | |
assert heugcd(f, g) == (h, cff, cfg) | |
def test_heugcd_multivariate_integers(): | |
R, x, y = ring("x,y", ZZ) | |
f, g = 2*x**2 + 4*x + 2, x + 1 | |
assert heugcd(f, g) == (x + 1, 2*x + 2, 1) | |
f, g = x + 1, 2*x**2 + 4*x + 2 | |
assert heugcd(f, g) == (x + 1, 1, 2*x + 2) | |
R, x, y, z, u = ring("x,y,z,u", ZZ) | |
f, g = u**2 + 2*u + 1, 2*u + 2 | |
assert heugcd(f, g) == (u + 1, u + 1, 2) | |
f, g = z**2*u**2 + 2*z**2*u + z**2 + z*u + z, u**2 + 2*u + 1 | |
h, cff, cfg = u + 1, z**2*u + z**2 + z, u + 1 | |
assert heugcd(f, g) == (h, cff, cfg) | |
assert heugcd(g, f) == (h, cfg, cff) | |
R, x, y, z = ring("x,y,z", ZZ) | |
f, g, h = R.fateman_poly_F_1() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
R, x, y, z, u, v = ring("x,y,z,u,v", ZZ) | |
f, g, h = R.fateman_poly_F_1() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
R, x, y, z, u, v, a, b = ring("x,y,z,u,v,a,b", ZZ) | |
f, g, h = R.fateman_poly_F_1() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
R, x, y, z, u, v, a, b, c, d = ring("x,y,z,u,v,a,b,c,d", ZZ) | |
f, g, h = R.fateman_poly_F_1() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
R, x, y, z = ring("x,y,z", ZZ) | |
f, g, h = R.fateman_poly_F_2() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
f, g, h = R.fateman_poly_F_3() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
R, x, y, z, t = ring("x,y,z,t", ZZ) | |
f, g, h = R.fateman_poly_F_3() | |
H, cff, cfg = heugcd(f, g) | |
assert H == h and H*cff == f and H*cfg == g | |
def test_issue_10996(): | |
R, x, y, z = ring("x,y,z", ZZ) | |
f = 12*x**6*y**7*z**3 - 3*x**4*y**9*z**3 + 12*x**3*y**5*z**4 | |
g = -48*x**7*y**8*z**3 + 12*x**5*y**10*z**3 - 48*x**5*y**7*z**2 + \ | |
36*x**4*y**7*z - 48*x**4*y**6*z**4 + 12*x**3*y**9*z**2 - 48*x**3*y**4 \ | |
- 9*x**2*y**9*z - 48*x**2*y**5*z**3 + 12*x*y**6 + 36*x*y**5*z**2 - 48*y**2*z | |
H, cff, cfg = heugcd(f, g) | |
assert H == 12*x**3*y**4 - 3*x*y**6 + 12*y**2*z | |
assert H*cff == f and H*cfg == g | |
def test_issue_25793(): | |
R, x = ring("x", ZZ) | |
f = x - 4851 # failure starts for values more than 4850 | |
g = f*(2*x + 1) | |
H, cff, cfg = R.dup_zz_heu_gcd(f, g) | |
assert H == f | |
# needs a test for dmp, too, that fails in master before this change | |