Spaces:
Running
Running
"""Tests for sparse distributed modules. """ | |
from sympy.polys.distributedmodules import ( | |
sdm_monomial_mul, sdm_monomial_deg, sdm_monomial_divides, | |
sdm_add, sdm_LM, sdm_LT, sdm_mul_term, sdm_zero, sdm_deg, | |
sdm_LC, sdm_from_dict, | |
sdm_spoly, sdm_ecart, sdm_nf_mora, sdm_groebner, | |
sdm_from_vector, sdm_to_vector, sdm_monomial_lcm | |
) | |
from sympy.polys.orderings import lex, grlex, InverseOrder | |
from sympy.polys.domains import QQ | |
from sympy.abc import x, y, z | |
def test_sdm_monomial_mul(): | |
assert sdm_monomial_mul((1, 1, 0), (1, 3)) == (1, 2, 3) | |
def test_sdm_monomial_deg(): | |
assert sdm_monomial_deg((5, 2, 1)) == 3 | |
def test_sdm_monomial_lcm(): | |
assert sdm_monomial_lcm((1, 2, 3), (1, 5, 0)) == (1, 5, 3) | |
def test_sdm_monomial_divides(): | |
assert sdm_monomial_divides((1, 0, 0), (1, 0, 0)) is True | |
assert sdm_monomial_divides((1, 0, 0), (1, 2, 1)) is True | |
assert sdm_monomial_divides((5, 1, 1), (5, 2, 1)) is True | |
assert sdm_monomial_divides((1, 0, 0), (2, 0, 0)) is False | |
assert sdm_monomial_divides((1, 1, 0), (1, 0, 0)) is False | |
assert sdm_monomial_divides((5, 1, 2), (5, 0, 1)) is False | |
def test_sdm_LC(): | |
assert sdm_LC([((1, 2, 3), QQ(5))], QQ) == QQ(5) | |
def test_sdm_from_dict(): | |
dic = {(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), (1, 0, 2, 1): QQ(1), | |
(1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)} | |
assert sdm_from_dict(dic, grlex) == \ | |
[((1, 2, 1, 1), QQ(1)), ((1, 1, 2, 1), QQ(1)), | |
((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))] | |
# TODO test to_dict? | |
def test_sdm_add(): | |
assert sdm_add([((1, 1, 1), QQ(1))], [((2, 0, 0), QQ(1))], lex, QQ) == \ | |
[((2, 0, 0), QQ(1)), ((1, 1, 1), QQ(1))] | |
assert sdm_add([((1, 1, 1), QQ(1))], [((1, 1, 1), QQ(-1))], lex, QQ) == [] | |
assert sdm_add([((1, 0, 0), QQ(1))], [((1, 0, 0), QQ(2))], lex, QQ) == \ | |
[((1, 0, 0), QQ(3))] | |
assert sdm_add([((1, 0, 1), QQ(1))], [((1, 1, 0), QQ(1))], lex, QQ) == \ | |
[((1, 1, 0), QQ(1)), ((1, 0, 1), QQ(1))] | |
def test_sdm_LM(): | |
dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(1), (4, 0, 1): QQ(1)} | |
assert sdm_LM(sdm_from_dict(dic, lex)) == (4, 0, 1) | |
def test_sdm_LT(): | |
dic = {(1, 2, 3): QQ(1), (4, 0, 0): QQ(2), (4, 0, 1): QQ(3)} | |
assert sdm_LT(sdm_from_dict(dic, lex)) == ((4, 0, 1), QQ(3)) | |
def test_sdm_mul_term(): | |
assert sdm_mul_term([((1, 0, 0), QQ(1))], ((0, 0), QQ(0)), lex, QQ) == [] | |
assert sdm_mul_term([], ((1, 0), QQ(1)), lex, QQ) == [] | |
assert sdm_mul_term([((1, 0, 0), QQ(1))], ((1, 0), QQ(1)), lex, QQ) == \ | |
[((1, 1, 0), QQ(1))] | |
f = [((2, 0, 1), QQ(4)), ((1, 1, 0), QQ(3))] | |
assert sdm_mul_term(f, ((1, 1), QQ(2)), lex, QQ) == \ | |
[((2, 1, 2), QQ(8)), ((1, 2, 1), QQ(6))] | |
def test_sdm_zero(): | |
assert sdm_zero() == [] | |
def test_sdm_deg(): | |
assert sdm_deg([((1, 2, 3), 1), ((10, 0, 1), 1), ((2, 3, 4), 4)]) == 7 | |
def test_sdm_spoly(): | |
f = [((2, 1, 1), QQ(1)), ((1, 0, 1), QQ(1))] | |
g = [((2, 3, 0), QQ(1))] | |
h = [((1, 2, 3), QQ(1))] | |
assert sdm_spoly(f, h, lex, QQ) == [] | |
assert sdm_spoly(f, g, lex, QQ) == [((1, 2, 1), QQ(1))] | |
def test_sdm_ecart(): | |
assert sdm_ecart([((1, 2, 3), 1), ((1, 0, 1), 1)]) == 0 | |
assert sdm_ecart([((2, 2, 1), 1), ((1, 5, 1), 1)]) == 3 | |
def test_sdm_nf_mora(): | |
f = sdm_from_dict({(1, 2, 1, 1): QQ(1), (1, 1, 2, 1): QQ(1), | |
(1, 0, 2, 1): QQ(1), (1, 0, 0, 3): QQ(1), (1, 1, 1, 0): QQ(1)}, | |
grlex) | |
f1 = sdm_from_dict({(1, 1, 1, 0): QQ(1), (1, 0, 2, 0): QQ(1), | |
(1, 0, 0, 0): QQ(-1)}, grlex) | |
f2 = sdm_from_dict({(1, 1, 1, 0): QQ(1)}, grlex) | |
(id0, id1, id2) = [sdm_from_dict({(i, 0, 0, 0): QQ(1)}, grlex) | |
for i in range(3)] | |
assert sdm_nf_mora(f, [f1, f2], grlex, QQ, phantom=(id0, [id1, id2])) == \ | |
([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1)), | |
((1, 1, 0, 1), QQ(1))], | |
[((1, 1, 0, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))]) | |
assert sdm_nf_mora(f, [f2, f1], grlex, QQ, phantom=(id0, [id2, id1])) == \ | |
([((1, 0, 2, 1), QQ(1)), ((1, 0, 0, 3), QQ(1)), ((1, 1, 1, 0), QQ(1))], | |
[((2, 1, 0, 1), QQ(-1)), ((2, 0, 1, 1), QQ(-1)), ((0, 0, 0, 0), QQ(1))]) | |
f = sdm_from_vector([x*z, y**2 + y*z - z, y], lex, QQ, gens=[x, y, z]) | |
f1 = sdm_from_vector([x, y, 1], lex, QQ, gens=[x, y, z]) | |
f2 = sdm_from_vector([x*y, z, z**2], lex, QQ, gens=[x, y, z]) | |
assert sdm_nf_mora(f, [f1, f2], lex, QQ) == \ | |
sdm_nf_mora(f, [f2, f1], lex, QQ) == \ | |
[((1, 0, 1, 1), QQ(1)), ((1, 0, 0, 1), QQ(-1)), ((0, 1, 1, 0), QQ(-1)), | |
((0, 1, 0, 1), QQ(1))] | |
def test_conversion(): | |
f = [x**2 + y**2, 2*z] | |
g = [((1, 0, 0, 1), QQ(2)), ((0, 2, 0, 0), QQ(1)), ((0, 0, 2, 0), QQ(1))] | |
assert sdm_to_vector(g, [x, y, z], QQ) == f | |
assert sdm_from_vector(f, lex, QQ) == g | |
assert sdm_from_vector( | |
[x, 1], lex, QQ) == [((1, 0), QQ(1)), ((0, 1), QQ(1))] | |
assert sdm_to_vector([((1, 1, 0, 0), 1)], [x, y, z], QQ, n=3) == [0, x, 0] | |
assert sdm_from_vector([0, 0], lex, QQ, gens=[x, y]) == sdm_zero() | |
def test_nontrivial(): | |
gens = [x, y, z] | |
def contains(I, f): | |
S = [sdm_from_vector([g], lex, QQ, gens=gens) for g in I] | |
G = sdm_groebner(S, sdm_nf_mora, lex, QQ) | |
return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens), | |
G, lex, QQ) == sdm_zero() | |
assert contains([x, y], x) | |
assert contains([x, y], x + y) | |
assert not contains([x, y], 1) | |
assert not contains([x, y], z) | |
assert contains([x**2 + y, x**2 + x], x - y) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**3) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y**2) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x**4 + y**3 + 2*z*y*x) | |
assert contains([x + y + z, x*y + x*z + y*z, x*y*z], x*y*z) | |
assert contains([x, 1 + x + y, 5 - 7*y], 1) | |
assert contains( | |
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], | |
x**3) | |
assert not contains( | |
[x**3 + y**3, y**3 + z**3, z**3 + x**3, x**2*y + x**2*z + y**2*z], | |
x**2 + y**2) | |
# compare local order | |
assert not contains([x*(1 + x + y), y*(1 + z)], x) | |
assert not contains([x*(1 + x + y), y*(1 + z)], x + y) | |
def test_local(): | |
igrlex = InverseOrder(grlex) | |
gens = [x, y, z] | |
def contains(I, f): | |
S = [sdm_from_vector([g], igrlex, QQ, gens=gens) for g in I] | |
G = sdm_groebner(S, sdm_nf_mora, igrlex, QQ) | |
return sdm_nf_mora(sdm_from_vector([f], lex, QQ, gens=gens), | |
G, lex, QQ) == sdm_zero() | |
assert contains([x, y], x) | |
assert contains([x, y], x + y) | |
assert not contains([x, y], 1) | |
assert not contains([x, y], z) | |
assert contains([x**2 + y, x**2 + x], x - y) | |
assert not contains([x + y + z, x*y + x*z + y*z, x*y*z], x**2) | |
assert contains([x*(1 + x + y), y*(1 + z)], x) | |
assert contains([x*(1 + x + y), y*(1 + z)], x + y) | |
def test_uncovered_line(): | |
gens = [x, y] | |
f1 = sdm_zero() | |
f2 = sdm_from_vector([x, 0], lex, QQ, gens=gens) | |
f3 = sdm_from_vector([0, y], lex, QQ, gens=gens) | |
assert sdm_spoly(f1, f2, lex, QQ) == sdm_zero() | |
assert sdm_spoly(f3, f2, lex, QQ) == sdm_zero() | |
def test_chain_criterion(): | |
gens = [x] | |
f1 = sdm_from_vector([1, x], grlex, QQ, gens=gens) | |
f2 = sdm_from_vector([0, x - 2], grlex, QQ, gens=gens) | |
assert len(sdm_groebner([f1, f2], sdm_nf_mora, grlex, QQ)) == 2 | |