Spaces:
Running
Running
"""Real and complex root isolation and refinement algorithms. """ | |
from sympy.polys.densearith import ( | |
dup_neg, dup_rshift, dup_rem, | |
dup_l2_norm_squared) | |
from sympy.polys.densebasic import ( | |
dup_LC, dup_TC, dup_degree, | |
dup_strip, dup_reverse, | |
dup_convert, | |
dup_terms_gcd) | |
from sympy.polys.densetools import ( | |
dup_clear_denoms, | |
dup_mirror, dup_scale, dup_shift, | |
dup_transform, | |
dup_diff, | |
dup_eval, dmp_eval_in, | |
dup_sign_variations, | |
dup_real_imag) | |
from sympy.polys.euclidtools import ( | |
dup_discriminant) | |
from sympy.polys.factortools import ( | |
dup_factor_list) | |
from sympy.polys.polyerrors import ( | |
RefinementFailed, | |
DomainError, | |
PolynomialError) | |
from sympy.polys.sqfreetools import ( | |
dup_sqf_part, dup_sqf_list) | |
def dup_sturm(f, K): | |
""" | |
Computes the Sturm sequence of ``f`` in ``F[x]``. | |
Given a univariate, square-free polynomial ``f(x)`` returns the | |
associated Sturm sequence ``f_0(x), ..., f_n(x)`` defined by:: | |
f_0(x), f_1(x) = f(x), f'(x) | |
f_n = -rem(f_{n-2}(x), f_{n-1}(x)) | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_sturm(x**3 - 2*x**2 + x - 3) | |
[x**3 - 2*x**2 + x - 3, 3*x**2 - 4*x + 1, 2/9*x + 25/9, -2079/4] | |
References | |
========== | |
.. [1] [Davenport88]_ | |
""" | |
if not K.is_Field: | |
raise DomainError("Cannot compute Sturm sequence over %s" % K) | |
f = dup_sqf_part(f, K) | |
sturm = [f, dup_diff(f, 1, K)] | |
while sturm[-1]: | |
s = dup_rem(sturm[-2], sturm[-1], K) | |
sturm.append(dup_neg(s, K)) | |
return sturm[:-1] | |
def dup_root_upper_bound(f, K): | |
"""Compute the LMQ upper bound for the positive roots of `f`; | |
LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas. | |
References | |
========== | |
.. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the | |
Values of the Positive Roots of Polynomials" | |
Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009. | |
""" | |
n, P = len(f), [] | |
t = n * [K.one] | |
if dup_LC(f, K) < 0: | |
f = dup_neg(f, K) | |
f = list(reversed(f)) | |
for i in range(0, n): | |
if f[i] >= 0: | |
continue | |
a, QL = K.log(-f[i], 2), [] | |
for j in range(i + 1, n): | |
if f[j] <= 0: | |
continue | |
q = t[j] + a - K.log(f[j], 2) | |
QL.append([q // (j - i), j]) | |
if not QL: | |
continue | |
q = min(QL) | |
t[q[1]] = t[q[1]] + 1 | |
P.append(q[0]) | |
if not P: | |
return None | |
else: | |
return K.get_field()(2)**(max(P) + 1) | |
def dup_root_lower_bound(f, K): | |
"""Compute the LMQ lower bound for the positive roots of `f`; | |
LMQ (Local Max Quadratic) was developed by Akritas-Strzebonski-Vigklas. | |
References | |
========== | |
.. [1] Alkiviadis G. Akritas: "Linear and Quadratic Complexity Bounds on the | |
Values of the Positive Roots of Polynomials" | |
Journal of Universal Computer Science, Vol. 15, No. 3, 523-537, 2009. | |
""" | |
bound = dup_root_upper_bound(dup_reverse(f), K) | |
if bound is not None: | |
return 1/bound | |
else: | |
return None | |
def dup_cauchy_upper_bound(f, K): | |
""" | |
Compute the Cauchy upper bound on the absolute value of all roots of f, | |
real or complex. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Geometrical_properties_of_polynomial_roots#Lagrange's_and_Cauchy's_bounds | |
""" | |
n = dup_degree(f) | |
if n < 1: | |
raise PolynomialError('Polynomial has no roots.') | |
if K.is_ZZ: | |
L = K.get_field() | |
f, K = dup_convert(f, K, L), L | |
elif not K.is_QQ or K.is_RR or K.is_CC: | |
# We need to compute absolute value, and we are not supporting cases | |
# where this would take us outside the domain (or its quotient field). | |
raise DomainError('Cauchy bound not supported over %s' % K) | |
else: | |
f = f[:] | |
while K.is_zero(f[-1]): | |
f.pop() | |
if len(f) == 1: | |
# Monomial. All roots are zero. | |
return K.zero | |
lc = f[0] | |
return K.one + max(abs(n / lc) for n in f[1:]) | |
def dup_cauchy_lower_bound(f, K): | |
"""Compute the Cauchy lower bound on the absolute value of all non-zero | |
roots of f, real or complex.""" | |
g = dup_reverse(f) | |
if len(g) < 2: | |
raise PolynomialError('Polynomial has no non-zero roots.') | |
if K.is_ZZ: | |
K = K.get_field() | |
b = dup_cauchy_upper_bound(g, K) | |
return K.one / b | |
def dup_mignotte_sep_bound_squared(f, K): | |
""" | |
Return the square of the Mignotte lower bound on separation between | |
distinct roots of f. The square is returned so that the bound lies in | |
K or its quotient field. | |
References | |
========== | |
.. [1] Mignotte, Maurice. "Some useful bounds." Computer algebra. | |
Springer, Vienna, 1982. 259-263. | |
https://people.dm.unipi.it/gianni/AC-EAG/Mignotte.pdf | |
""" | |
n = dup_degree(f) | |
if n < 2: | |
raise PolynomialError('Polynomials of degree < 2 have no distinct roots.') | |
if K.is_ZZ: | |
L = K.get_field() | |
f, K = dup_convert(f, K, L), L | |
elif not K.is_QQ or K.is_RR or K.is_CC: | |
# We need to compute absolute value, and we are not supporting cases | |
# where this would take us outside the domain (or its quotient field). | |
raise DomainError('Mignotte bound not supported over %s' % K) | |
D = dup_discriminant(f, K) | |
l2sq = dup_l2_norm_squared(f, K) | |
return K(3)*K.abs(D) / ( K(n)**(n+1) * l2sq**(n-1) ) | |
def _mobius_from_interval(I, field): | |
"""Convert an open interval to a Mobius transform. """ | |
s, t = I | |
a, c = field.numer(s), field.denom(s) | |
b, d = field.numer(t), field.denom(t) | |
return a, b, c, d | |
def _mobius_to_interval(M, field): | |
"""Convert a Mobius transform to an open interval. """ | |
a, b, c, d = M | |
s, t = field(a, c), field(b, d) | |
if s <= t: | |
return (s, t) | |
else: | |
return (t, s) | |
def dup_step_refine_real_root(f, M, K, fast=False): | |
"""One step of positive real root refinement algorithm. """ | |
a, b, c, d = M | |
if a == b and c == d: | |
return f, (a, b, c, d) | |
A = dup_root_lower_bound(f, K) | |
if A is not None: | |
A = K(int(A)) | |
else: | |
A = K.zero | |
if fast and A > 16: | |
f = dup_scale(f, A, K) | |
a, c, A = A*a, A*c, K.one | |
if A >= K.one: | |
f = dup_shift(f, A, K) | |
b, d = A*a + b, A*c + d | |
if not dup_eval(f, K.zero, K): | |
return f, (b, b, d, d) | |
f, g = dup_shift(f, K.one, K), f | |
a1, b1, c1, d1 = a, a + b, c, c + d | |
if not dup_eval(f, K.zero, K): | |
return f, (b1, b1, d1, d1) | |
k = dup_sign_variations(f, K) | |
if k == 1: | |
a, b, c, d = a1, b1, c1, d1 | |
else: | |
f = dup_shift(dup_reverse(g), K.one, K) | |
if not dup_eval(f, K.zero, K): | |
f = dup_rshift(f, 1, K) | |
a, b, c, d = b, a + b, d, c + d | |
return f, (a, b, c, d) | |
def dup_inner_refine_real_root(f, M, K, eps=None, steps=None, disjoint=None, fast=False, mobius=False): | |
"""Refine a positive root of `f` given a Mobius transform or an interval. """ | |
F = K.get_field() | |
if len(M) == 2: | |
a, b, c, d = _mobius_from_interval(M, F) | |
else: | |
a, b, c, d = M | |
while not c: | |
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, | |
d), K, fast=fast) | |
if eps is not None and steps is not None: | |
for i in range(0, steps): | |
if abs(F(a, c) - F(b, d)) >= eps: | |
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) | |
else: | |
break | |
else: | |
if eps is not None: | |
while abs(F(a, c) - F(b, d)) >= eps: | |
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) | |
if steps is not None: | |
for i in range(0, steps): | |
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) | |
if disjoint is not None: | |
while True: | |
u, v = _mobius_to_interval((a, b, c, d), F) | |
if v <= disjoint or disjoint <= u: | |
break | |
else: | |
f, (a, b, c, d) = dup_step_refine_real_root(f, (a, b, c, d), K, fast=fast) | |
if not mobius: | |
return _mobius_to_interval((a, b, c, d), F) | |
else: | |
return f, (a, b, c, d) | |
def dup_outer_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False): | |
"""Refine a positive root of `f` given an interval `(s, t)`. """ | |
a, b, c, d = _mobius_from_interval((s, t), K.get_field()) | |
f = dup_transform(f, dup_strip([a, b]), | |
dup_strip([c, d]), K) | |
if dup_sign_variations(f, K) != 1: | |
raise RefinementFailed("there should be exactly one root in (%s, %s) interval" % (s, t)) | |
return dup_inner_refine_real_root(f, (a, b, c, d), K, eps=eps, steps=steps, disjoint=disjoint, fast=fast) | |
def dup_refine_real_root(f, s, t, K, eps=None, steps=None, disjoint=None, fast=False): | |
"""Refine real root's approximating interval to the given precision. """ | |
if K.is_QQ: | |
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() | |
elif not K.is_ZZ: | |
raise DomainError("real root refinement not supported over %s" % K) | |
if s == t: | |
return (s, t) | |
if s > t: | |
s, t = t, s | |
negative = False | |
if s < 0: | |
if t <= 0: | |
f, s, t, negative = dup_mirror(f, K), -t, -s, True | |
else: | |
raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t)) | |
if negative and disjoint is not None: | |
if disjoint < 0: | |
disjoint = -disjoint | |
else: | |
disjoint = None | |
s, t = dup_outer_refine_real_root( | |
f, s, t, K, eps=eps, steps=steps, disjoint=disjoint, fast=fast) | |
if negative: | |
return (-t, -s) | |
else: | |
return ( s, t) | |
def dup_inner_isolate_real_roots(f, K, eps=None, fast=False): | |
"""Internal function for isolation positive roots up to given precision. | |
References | |
========== | |
1. Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative Study of Two Real Root | |
Isolation Methods . Nonlinear Analysis: Modelling and Control, Vol. 10, No. 4, 297-304, 2005. | |
2. Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. Vigklas: Improving the | |
Performance of the Continued Fractions Method Using new Bounds of Positive Roots. Nonlinear | |
Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. | |
""" | |
a, b, c, d = K.one, K.zero, K.zero, K.one | |
k = dup_sign_variations(f, K) | |
if k == 0: | |
return [] | |
if k == 1: | |
roots = [dup_inner_refine_real_root( | |
f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True)] | |
else: | |
roots, stack = [], [(a, b, c, d, f, k)] | |
while stack: | |
a, b, c, d, f, k = stack.pop() | |
A = dup_root_lower_bound(f, K) | |
if A is not None: | |
A = K(int(A)) | |
else: | |
A = K.zero | |
if fast and A > 16: | |
f = dup_scale(f, A, K) | |
a, c, A = A*a, A*c, K.one | |
if A >= K.one: | |
f = dup_shift(f, A, K) | |
b, d = A*a + b, A*c + d | |
if not dup_TC(f, K): | |
roots.append((f, (b, b, d, d))) | |
f = dup_rshift(f, 1, K) | |
k = dup_sign_variations(f, K) | |
if k == 0: | |
continue | |
if k == 1: | |
roots.append(dup_inner_refine_real_root( | |
f, (a, b, c, d), K, eps=eps, fast=fast, mobius=True)) | |
continue | |
f1 = dup_shift(f, K.one, K) | |
a1, b1, c1, d1, r = a, a + b, c, c + d, 0 | |
if not dup_TC(f1, K): | |
roots.append((f1, (b1, b1, d1, d1))) | |
f1, r = dup_rshift(f1, 1, K), 1 | |
k1 = dup_sign_variations(f1, K) | |
k2 = k - k1 - r | |
a2, b2, c2, d2 = b, a + b, d, c + d | |
if k2 > 1: | |
f2 = dup_shift(dup_reverse(f), K.one, K) | |
if not dup_TC(f2, K): | |
f2 = dup_rshift(f2, 1, K) | |
k2 = dup_sign_variations(f2, K) | |
else: | |
f2 = None | |
if k1 < k2: | |
a1, a2, b1, b2 = a2, a1, b2, b1 | |
c1, c2, d1, d2 = c2, c1, d2, d1 | |
f1, f2, k1, k2 = f2, f1, k2, k1 | |
if not k1: | |
continue | |
if f1 is None: | |
f1 = dup_shift(dup_reverse(f), K.one, K) | |
if not dup_TC(f1, K): | |
f1 = dup_rshift(f1, 1, K) | |
if k1 == 1: | |
roots.append(dup_inner_refine_real_root( | |
f1, (a1, b1, c1, d1), K, eps=eps, fast=fast, mobius=True)) | |
else: | |
stack.append((a1, b1, c1, d1, f1, k1)) | |
if not k2: | |
continue | |
if f2 is None: | |
f2 = dup_shift(dup_reverse(f), K.one, K) | |
if not dup_TC(f2, K): | |
f2 = dup_rshift(f2, 1, K) | |
if k2 == 1: | |
roots.append(dup_inner_refine_real_root( | |
f2, (a2, b2, c2, d2), K, eps=eps, fast=fast, mobius=True)) | |
else: | |
stack.append((a2, b2, c2, d2, f2, k2)) | |
return roots | |
def _discard_if_outside_interval(f, M, inf, sup, K, negative, fast, mobius): | |
"""Discard an isolating interval if outside ``(inf, sup)``. """ | |
F = K.get_field() | |
while True: | |
u, v = _mobius_to_interval(M, F) | |
if negative: | |
u, v = -v, -u | |
if (inf is None or u >= inf) and (sup is None or v <= sup): | |
if not mobius: | |
return u, v | |
else: | |
return f, M | |
elif (sup is not None and u > sup) or (inf is not None and v < inf): | |
return None | |
else: | |
f, M = dup_step_refine_real_root(f, M, K, fast=fast) | |
def dup_inner_isolate_positive_roots(f, K, eps=None, inf=None, sup=None, fast=False, mobius=False): | |
"""Iteratively compute disjoint positive root isolation intervals. """ | |
if sup is not None and sup < 0: | |
return [] | |
roots = dup_inner_isolate_real_roots(f, K, eps=eps, fast=fast) | |
F, results = K.get_field(), [] | |
if inf is not None or sup is not None: | |
for f, M in roots: | |
result = _discard_if_outside_interval(f, M, inf, sup, K, False, fast, mobius) | |
if result is not None: | |
results.append(result) | |
elif not mobius: | |
for f, M in roots: | |
u, v = _mobius_to_interval(M, F) | |
results.append((u, v)) | |
else: | |
results = roots | |
return results | |
def dup_inner_isolate_negative_roots(f, K, inf=None, sup=None, eps=None, fast=False, mobius=False): | |
"""Iteratively compute disjoint negative root isolation intervals. """ | |
if inf is not None and inf >= 0: | |
return [] | |
roots = dup_inner_isolate_real_roots(dup_mirror(f, K), K, eps=eps, fast=fast) | |
F, results = K.get_field(), [] | |
if inf is not None or sup is not None: | |
for f, M in roots: | |
result = _discard_if_outside_interval(f, M, inf, sup, K, True, fast, mobius) | |
if result is not None: | |
results.append(result) | |
elif not mobius: | |
for f, M in roots: | |
u, v = _mobius_to_interval(M, F) | |
results.append((-v, -u)) | |
else: | |
results = roots | |
return results | |
def _isolate_zero(f, K, inf, sup, basis=False, sqf=False): | |
"""Handle special case of CF algorithm when ``f`` is homogeneous. """ | |
j, f = dup_terms_gcd(f, K) | |
if j > 0: | |
F = K.get_field() | |
if (inf is None or inf <= 0) and (sup is None or 0 <= sup): | |
if not sqf: | |
if not basis: | |
return [((F.zero, F.zero), j)], f | |
else: | |
return [((F.zero, F.zero), j, [K.one, K.zero])], f | |
else: | |
return [(F.zero, F.zero)], f | |
return [], f | |
def dup_isolate_real_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False): | |
"""Isolate real roots of a square-free polynomial using the Vincent-Akritas-Strzebonski (VAS) CF approach. | |
References | |
========== | |
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative | |
Study of Two Real Root Isolation Methods. Nonlinear Analysis: | |
Modelling and Control, Vol. 10, No. 4, 297-304, 2005. | |
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. | |
Vigklas: Improving the Performance of the Continued Fractions | |
Method Using New Bounds of Positive Roots. Nonlinear Analysis: | |
Modelling and Control, Vol. 13, No. 3, 265-279, 2008. | |
""" | |
if K.is_QQ: | |
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() | |
elif not K.is_ZZ: | |
raise DomainError("isolation of real roots not supported over %s" % K) | |
if dup_degree(f) <= 0: | |
return [] | |
I_zero, f = _isolate_zero(f, K, inf, sup, basis=False, sqf=True) | |
I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) | |
I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) | |
roots = sorted(I_neg + I_zero + I_pos) | |
if not blackbox: | |
return roots | |
else: | |
return [ RealInterval((a, b), f, K) for (a, b) in roots ] | |
def dup_isolate_real_roots(f, K, eps=None, inf=None, sup=None, basis=False, fast=False): | |
"""Isolate real roots using Vincent-Akritas-Strzebonski (VAS) continued fractions approach. | |
References | |
========== | |
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative | |
Study of Two Real Root Isolation Methods. Nonlinear Analysis: | |
Modelling and Control, Vol. 10, No. 4, 297-304, 2005. | |
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. | |
Vigklas: Improving the Performance of the Continued Fractions | |
Method Using New Bounds of Positive Roots. | |
Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. | |
""" | |
if K.is_QQ: | |
(_, f), K = dup_clear_denoms(f, K, convert=True), K.get_ring() | |
elif not K.is_ZZ: | |
raise DomainError("isolation of real roots not supported over %s" % K) | |
if dup_degree(f) <= 0: | |
return [] | |
I_zero, f = _isolate_zero(f, K, inf, sup, basis=basis, sqf=False) | |
_, factors = dup_sqf_list(f, K) | |
if len(factors) == 1: | |
((f, k),) = factors | |
I_neg = dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) | |
I_pos = dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast) | |
I_neg = [ ((u, v), k) for u, v in I_neg ] | |
I_pos = [ ((u, v), k) for u, v in I_pos ] | |
else: | |
I_neg, I_pos = _real_isolate_and_disjoin(factors, K, | |
eps=eps, inf=inf, sup=sup, basis=basis, fast=fast) | |
return sorted(I_neg + I_zero + I_pos) | |
def dup_isolate_real_roots_list(polys, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False): | |
"""Isolate real roots of a list of square-free polynomial using Vincent-Akritas-Strzebonski (VAS) CF approach. | |
References | |
========== | |
.. [1] Alkiviadis G. Akritas and Adam W. Strzebonski: A Comparative | |
Study of Two Real Root Isolation Methods. Nonlinear Analysis: | |
Modelling and Control, Vol. 10, No. 4, 297-304, 2005. | |
.. [2] Alkiviadis G. Akritas, Adam W. Strzebonski and Panagiotis S. | |
Vigklas: Improving the Performance of the Continued Fractions | |
Method Using New Bounds of Positive Roots. | |
Nonlinear Analysis: Modelling and Control, Vol. 13, No. 3, 265-279, 2008. | |
""" | |
if K.is_QQ: | |
K, F, polys = K.get_ring(), K, polys[:] | |
for i, p in enumerate(polys): | |
polys[i] = dup_clear_denoms(p, F, K, convert=True)[1] | |
elif not K.is_ZZ: | |
raise DomainError("isolation of real roots not supported over %s" % K) | |
zeros, factors_dict = False, {} | |
if (inf is None or inf <= 0) and (sup is None or 0 <= sup): | |
zeros, zero_indices = True, {} | |
for i, p in enumerate(polys): | |
j, p = dup_terms_gcd(p, K) | |
if zeros and j > 0: | |
zero_indices[i] = j | |
for f, k in dup_factor_list(p, K)[1]: | |
f = tuple(f) | |
if f not in factors_dict: | |
factors_dict[f] = {i: k} | |
else: | |
factors_dict[f][i] = k | |
factors_list = [] | |
for f, indices in factors_dict.items(): | |
factors_list.append((list(f), indices)) | |
I_neg, I_pos = _real_isolate_and_disjoin(factors_list, K, eps=eps, | |
inf=inf, sup=sup, strict=strict, basis=basis, fast=fast) | |
F = K.get_field() | |
if not zeros or not zero_indices: | |
I_zero = [] | |
else: | |
if not basis: | |
I_zero = [((F.zero, F.zero), zero_indices)] | |
else: | |
I_zero = [((F.zero, F.zero), zero_indices, [K.one, K.zero])] | |
return sorted(I_neg + I_zero + I_pos) | |
def _disjoint_p(M, N, strict=False): | |
"""Check if Mobius transforms define disjoint intervals. """ | |
a1, b1, c1, d1 = M | |
a2, b2, c2, d2 = N | |
a1d1, b1c1 = a1*d1, b1*c1 | |
a2d2, b2c2 = a2*d2, b2*c2 | |
if a1d1 == b1c1 and a2d2 == b2c2: | |
return True | |
if a1d1 > b1c1: | |
a1, c1, b1, d1 = b1, d1, a1, c1 | |
if a2d2 > b2c2: | |
a2, c2, b2, d2 = b2, d2, a2, c2 | |
if not strict: | |
return a2*d1 >= c2*b1 or b2*c1 <= d2*a1 | |
else: | |
return a2*d1 > c2*b1 or b2*c1 < d2*a1 | |
def _real_isolate_and_disjoin(factors, K, eps=None, inf=None, sup=None, strict=False, basis=False, fast=False): | |
"""Isolate real roots of a list of polynomials and disjoin intervals. """ | |
I_pos, I_neg = [], [] | |
for i, (f, k) in enumerate(factors): | |
for F, M in dup_inner_isolate_positive_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True): | |
I_pos.append((F, M, k, f)) | |
for G, N in dup_inner_isolate_negative_roots(f, K, eps=eps, inf=inf, sup=sup, fast=fast, mobius=True): | |
I_neg.append((G, N, k, f)) | |
for i, (f, M, k, F) in enumerate(I_pos): | |
for j, (g, N, m, G) in enumerate(I_pos[i + 1:]): | |
while not _disjoint_p(M, N, strict=strict): | |
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) | |
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) | |
I_pos[i + j + 1] = (g, N, m, G) | |
I_pos[i] = (f, M, k, F) | |
for i, (f, M, k, F) in enumerate(I_neg): | |
for j, (g, N, m, G) in enumerate(I_neg[i + 1:]): | |
while not _disjoint_p(M, N, strict=strict): | |
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) | |
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) | |
I_neg[i + j + 1] = (g, N, m, G) | |
I_neg[i] = (f, M, k, F) | |
if strict: | |
for i, (f, M, k, F) in enumerate(I_neg): | |
if not M[0]: | |
while not M[0]: | |
f, M = dup_inner_refine_real_root(f, M, K, steps=1, fast=fast, mobius=True) | |
I_neg[i] = (f, M, k, F) | |
break | |
for j, (g, N, m, G) in enumerate(I_pos): | |
if not N[0]: | |
while not N[0]: | |
g, N = dup_inner_refine_real_root(g, N, K, steps=1, fast=fast, mobius=True) | |
I_pos[j] = (g, N, m, G) | |
break | |
field = K.get_field() | |
I_neg = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_neg ] | |
I_pos = [ (_mobius_to_interval(M, field), k, f) for (_, M, k, f) in I_pos ] | |
I_neg = [((-v, -u), k, f) for ((u, v), k, f) in I_neg] | |
if not basis: | |
I_neg = [((u, v), k) for ((u, v), k, _) in I_neg] | |
I_pos = [((u, v), k) for ((u, v), k, _) in I_pos] | |
return I_neg, I_pos | |
def dup_count_real_roots(f, K, inf=None, sup=None): | |
"""Returns the number of distinct real roots of ``f`` in ``[inf, sup]``. """ | |
if dup_degree(f) <= 0: | |
return 0 | |
if not K.is_Field: | |
R, K = K, K.get_field() | |
f = dup_convert(f, R, K) | |
sturm = dup_sturm(f, K) | |
if inf is None: | |
signs_inf = dup_sign_variations([ dup_LC(s, K)*(-1)**dup_degree(s) for s in sturm ], K) | |
else: | |
signs_inf = dup_sign_variations([ dup_eval(s, inf, K) for s in sturm ], K) | |
if sup is None: | |
signs_sup = dup_sign_variations([ dup_LC(s, K) for s in sturm ], K) | |
else: | |
signs_sup = dup_sign_variations([ dup_eval(s, sup, K) for s in sturm ], K) | |
count = abs(signs_inf - signs_sup) | |
if inf is not None and not dup_eval(f, inf, K): | |
count += 1 | |
return count | |
OO = 'OO' # Origin of (re, im) coordinate system | |
Q1 = 'Q1' # Quadrant #1 (++): re > 0 and im > 0 | |
Q2 = 'Q2' # Quadrant #2 (-+): re < 0 and im > 0 | |
Q3 = 'Q3' # Quadrant #3 (--): re < 0 and im < 0 | |
Q4 = 'Q4' # Quadrant #4 (+-): re > 0 and im < 0 | |
A1 = 'A1' # Axis #1 (+0): re > 0 and im = 0 | |
A2 = 'A2' # Axis #2 (0+): re = 0 and im > 0 | |
A3 = 'A3' # Axis #3 (-0): re < 0 and im = 0 | |
A4 = 'A4' # Axis #4 (0-): re = 0 and im < 0 | |
_rules_simple = { | |
# Q --> Q (same) => no change | |
(Q1, Q1): 0, | |
(Q2, Q2): 0, | |
(Q3, Q3): 0, | |
(Q4, Q4): 0, | |
# A -- CCW --> Q => +1/4 (CCW) | |
(A1, Q1): 1, | |
(A2, Q2): 1, | |
(A3, Q3): 1, | |
(A4, Q4): 1, | |
# A -- CW --> Q => -1/4 (CCW) | |
(A1, Q4): 2, | |
(A2, Q1): 2, | |
(A3, Q2): 2, | |
(A4, Q3): 2, | |
# Q -- CCW --> A => +1/4 (CCW) | |
(Q1, A2): 3, | |
(Q2, A3): 3, | |
(Q3, A4): 3, | |
(Q4, A1): 3, | |
# Q -- CW --> A => -1/4 (CCW) | |
(Q1, A1): 4, | |
(Q2, A2): 4, | |
(Q3, A3): 4, | |
(Q4, A4): 4, | |
# Q -- CCW --> Q => +1/2 (CCW) | |
(Q1, Q2): +5, | |
(Q2, Q3): +5, | |
(Q3, Q4): +5, | |
(Q4, Q1): +5, | |
# Q -- CW --> Q => -1/2 (CW) | |
(Q1, Q4): -5, | |
(Q2, Q1): -5, | |
(Q3, Q2): -5, | |
(Q4, Q3): -5, | |
} | |
_rules_ambiguous = { | |
# A -- CCW --> Q => { +1/4 (CCW), -9/4 (CW) } | |
(A1, OO, Q1): -1, | |
(A2, OO, Q2): -1, | |
(A3, OO, Q3): -1, | |
(A4, OO, Q4): -1, | |
# A -- CW --> Q => { -1/4 (CCW), +7/4 (CW) } | |
(A1, OO, Q4): -2, | |
(A2, OO, Q1): -2, | |
(A3, OO, Q2): -2, | |
(A4, OO, Q3): -2, | |
# Q -- CCW --> A => { +1/4 (CCW), -9/4 (CW) } | |
(Q1, OO, A2): -3, | |
(Q2, OO, A3): -3, | |
(Q3, OO, A4): -3, | |
(Q4, OO, A1): -3, | |
# Q -- CW --> A => { -1/4 (CCW), +7/4 (CW) } | |
(Q1, OO, A1): -4, | |
(Q2, OO, A2): -4, | |
(Q3, OO, A3): -4, | |
(Q4, OO, A4): -4, | |
# A -- OO --> A => { +1 (CCW), -1 (CW) } | |
(A1, A3): 7, | |
(A2, A4): 7, | |
(A3, A1): 7, | |
(A4, A2): 7, | |
(A1, OO, A3): 7, | |
(A2, OO, A4): 7, | |
(A3, OO, A1): 7, | |
(A4, OO, A2): 7, | |
# Q -- DIA --> Q => { +1 (CCW), -1 (CW) } | |
(Q1, Q3): 8, | |
(Q2, Q4): 8, | |
(Q3, Q1): 8, | |
(Q4, Q2): 8, | |
(Q1, OO, Q3): 8, | |
(Q2, OO, Q4): 8, | |
(Q3, OO, Q1): 8, | |
(Q4, OO, Q2): 8, | |
# A --- R ---> A => { +1/2 (CCW), -3/2 (CW) } | |
(A1, A2): 9, | |
(A2, A3): 9, | |
(A3, A4): 9, | |
(A4, A1): 9, | |
(A1, OO, A2): 9, | |
(A2, OO, A3): 9, | |
(A3, OO, A4): 9, | |
(A4, OO, A1): 9, | |
# A --- L ---> A => { +3/2 (CCW), -1/2 (CW) } | |
(A1, A4): 10, | |
(A2, A1): 10, | |
(A3, A2): 10, | |
(A4, A3): 10, | |
(A1, OO, A4): 10, | |
(A2, OO, A1): 10, | |
(A3, OO, A2): 10, | |
(A4, OO, A3): 10, | |
# Q --- 1 ---> A => { +3/4 (CCW), -5/4 (CW) } | |
(Q1, A3): 11, | |
(Q2, A4): 11, | |
(Q3, A1): 11, | |
(Q4, A2): 11, | |
(Q1, OO, A3): 11, | |
(Q2, OO, A4): 11, | |
(Q3, OO, A1): 11, | |
(Q4, OO, A2): 11, | |
# Q --- 2 ---> A => { +5/4 (CCW), -3/4 (CW) } | |
(Q1, A4): 12, | |
(Q2, A1): 12, | |
(Q3, A2): 12, | |
(Q4, A3): 12, | |
(Q1, OO, A4): 12, | |
(Q2, OO, A1): 12, | |
(Q3, OO, A2): 12, | |
(Q4, OO, A3): 12, | |
# A --- 1 ---> Q => { +5/4 (CCW), -3/4 (CW) } | |
(A1, Q3): 13, | |
(A2, Q4): 13, | |
(A3, Q1): 13, | |
(A4, Q2): 13, | |
(A1, OO, Q3): 13, | |
(A2, OO, Q4): 13, | |
(A3, OO, Q1): 13, | |
(A4, OO, Q2): 13, | |
# A --- 2 ---> Q => { +3/4 (CCW), -5/4 (CW) } | |
(A1, Q2): 14, | |
(A2, Q3): 14, | |
(A3, Q4): 14, | |
(A4, Q1): 14, | |
(A1, OO, Q2): 14, | |
(A2, OO, Q3): 14, | |
(A3, OO, Q4): 14, | |
(A4, OO, Q1): 14, | |
# Q --> OO --> Q => { +1/2 (CCW), -3/2 (CW) } | |
(Q1, OO, Q2): 15, | |
(Q2, OO, Q3): 15, | |
(Q3, OO, Q4): 15, | |
(Q4, OO, Q1): 15, | |
# Q --> OO --> Q => { +3/2 (CCW), -1/2 (CW) } | |
(Q1, OO, Q4): 16, | |
(Q2, OO, Q1): 16, | |
(Q3, OO, Q2): 16, | |
(Q4, OO, Q3): 16, | |
# A --> OO --> A => { +2 (CCW), 0 (CW) } | |
(A1, OO, A1): 17, | |
(A2, OO, A2): 17, | |
(A3, OO, A3): 17, | |
(A4, OO, A4): 17, | |
# Q --> OO --> Q => { +2 (CCW), 0 (CW) } | |
(Q1, OO, Q1): 18, | |
(Q2, OO, Q2): 18, | |
(Q3, OO, Q3): 18, | |
(Q4, OO, Q4): 18, | |
} | |
_values = { | |
0: [( 0, 1)], | |
1: [(+1, 4)], | |
2: [(-1, 4)], | |
3: [(+1, 4)], | |
4: [(-1, 4)], | |
-1: [(+9, 4), (+1, 4)], | |
-2: [(+7, 4), (-1, 4)], | |
-3: [(+9, 4), (+1, 4)], | |
-4: [(+7, 4), (-1, 4)], | |
+5: [(+1, 2)], | |
-5: [(-1, 2)], | |
7: [(+1, 1), (-1, 1)], | |
8: [(+1, 1), (-1, 1)], | |
9: [(+1, 2), (-3, 2)], | |
10: [(+3, 2), (-1, 2)], | |
11: [(+3, 4), (-5, 4)], | |
12: [(+5, 4), (-3, 4)], | |
13: [(+5, 4), (-3, 4)], | |
14: [(+3, 4), (-5, 4)], | |
15: [(+1, 2), (-3, 2)], | |
16: [(+3, 2), (-1, 2)], | |
17: [(+2, 1), ( 0, 1)], | |
18: [(+2, 1), ( 0, 1)], | |
} | |
def _classify_point(re, im): | |
"""Return the half-axis (or origin) on which (re, im) point is located. """ | |
if not re and not im: | |
return OO | |
if not re: | |
if im > 0: | |
return A2 | |
else: | |
return A4 | |
elif not im: | |
if re > 0: | |
return A1 | |
else: | |
return A3 | |
def _intervals_to_quadrants(intervals, f1, f2, s, t, F): | |
"""Generate a sequence of extended quadrants from a list of critical points. """ | |
if not intervals: | |
return [] | |
Q = [] | |
if not f1: | |
(a, b), _, _ = intervals[0] | |
if a == b == s: | |
if len(intervals) == 1: | |
if dup_eval(f2, t, F) > 0: | |
return [OO, A2] | |
else: | |
return [OO, A4] | |
else: | |
(a, _), _, _ = intervals[1] | |
if dup_eval(f2, (s + a)/2, F) > 0: | |
Q.extend([OO, A2]) | |
f2_sgn = +1 | |
else: | |
Q.extend([OO, A4]) | |
f2_sgn = -1 | |
intervals = intervals[1:] | |
else: | |
if dup_eval(f2, s, F) > 0: | |
Q.append(A2) | |
f2_sgn = +1 | |
else: | |
Q.append(A4) | |
f2_sgn = -1 | |
for (a, _), indices, _ in intervals: | |
Q.append(OO) | |
if indices[1] % 2 == 1: | |
f2_sgn = -f2_sgn | |
if a != t: | |
if f2_sgn > 0: | |
Q.append(A2) | |
else: | |
Q.append(A4) | |
return Q | |
if not f2: | |
(a, b), _, _ = intervals[0] | |
if a == b == s: | |
if len(intervals) == 1: | |
if dup_eval(f1, t, F) > 0: | |
return [OO, A1] | |
else: | |
return [OO, A3] | |
else: | |
(a, _), _, _ = intervals[1] | |
if dup_eval(f1, (s + a)/2, F) > 0: | |
Q.extend([OO, A1]) | |
f1_sgn = +1 | |
else: | |
Q.extend([OO, A3]) | |
f1_sgn = -1 | |
intervals = intervals[1:] | |
else: | |
if dup_eval(f1, s, F) > 0: | |
Q.append(A1) | |
f1_sgn = +1 | |
else: | |
Q.append(A3) | |
f1_sgn = -1 | |
for (a, _), indices, _ in intervals: | |
Q.append(OO) | |
if indices[0] % 2 == 1: | |
f1_sgn = -f1_sgn | |
if a != t: | |
if f1_sgn > 0: | |
Q.append(A1) | |
else: | |
Q.append(A3) | |
return Q | |
re = dup_eval(f1, s, F) | |
im = dup_eval(f2, s, F) | |
if not re or not im: | |
Q.append(_classify_point(re, im)) | |
if len(intervals) == 1: | |
re = dup_eval(f1, t, F) | |
im = dup_eval(f2, t, F) | |
else: | |
(a, _), _, _ = intervals[1] | |
re = dup_eval(f1, (s + a)/2, F) | |
im = dup_eval(f2, (s + a)/2, F) | |
intervals = intervals[1:] | |
if re > 0: | |
f1_sgn = +1 | |
else: | |
f1_sgn = -1 | |
if im > 0: | |
f2_sgn = +1 | |
else: | |
f2_sgn = -1 | |
sgn = { | |
(+1, +1): Q1, | |
(-1, +1): Q2, | |
(-1, -1): Q3, | |
(+1, -1): Q4, | |
} | |
Q.append(sgn[(f1_sgn, f2_sgn)]) | |
for (a, b), indices, _ in intervals: | |
if a == b: | |
re = dup_eval(f1, a, F) | |
im = dup_eval(f2, a, F) | |
cls = _classify_point(re, im) | |
if cls is not None: | |
Q.append(cls) | |
if 0 in indices: | |
if indices[0] % 2 == 1: | |
f1_sgn = -f1_sgn | |
if 1 in indices: | |
if indices[1] % 2 == 1: | |
f2_sgn = -f2_sgn | |
if not (a == b and b == t): | |
Q.append(sgn[(f1_sgn, f2_sgn)]) | |
return Q | |
def _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=None): | |
"""Transform sequences of quadrants to a sequence of rules. """ | |
if exclude is True: | |
edges = [1, 1, 0, 0] | |
corners = { | |
(0, 1): 1, | |
(1, 2): 1, | |
(2, 3): 0, | |
(3, 0): 1, | |
} | |
else: | |
edges = [0, 0, 0, 0] | |
corners = { | |
(0, 1): 0, | |
(1, 2): 0, | |
(2, 3): 0, | |
(3, 0): 0, | |
} | |
if exclude is not None and exclude is not True: | |
exclude = set(exclude) | |
for i, edge in enumerate(['S', 'E', 'N', 'W']): | |
if edge in exclude: | |
edges[i] = 1 | |
for i, corner in enumerate(['SW', 'SE', 'NE', 'NW']): | |
if corner in exclude: | |
corners[((i - 1) % 4, i)] = 1 | |
QQ, rules = [Q_L1, Q_L2, Q_L3, Q_L4], [] | |
for i, Q in enumerate(QQ): | |
if not Q: | |
continue | |
if Q[-1] == OO: | |
Q = Q[:-1] | |
if Q[0] == OO: | |
j, Q = (i - 1) % 4, Q[1:] | |
qq = (QQ[j][-2], OO, Q[0]) | |
if qq in _rules_ambiguous: | |
rules.append((_rules_ambiguous[qq], corners[(j, i)])) | |
else: | |
raise NotImplementedError("3 element rule (corner): " + str(qq)) | |
q1, k = Q[0], 1 | |
while k < len(Q): | |
q2, k = Q[k], k + 1 | |
if q2 != OO: | |
qq = (q1, q2) | |
if qq in _rules_simple: | |
rules.append((_rules_simple[qq], 0)) | |
elif qq in _rules_ambiguous: | |
rules.append((_rules_ambiguous[qq], edges[i])) | |
else: | |
raise NotImplementedError("2 element rule (inside): " + str(qq)) | |
else: | |
qq, k = (q1, q2, Q[k]), k + 1 | |
if qq in _rules_ambiguous: | |
rules.append((_rules_ambiguous[qq], edges[i])) | |
else: | |
raise NotImplementedError("3 element rule (edge): " + str(qq)) | |
q1 = qq[-1] | |
return rules | |
def _reverse_intervals(intervals): | |
"""Reverse intervals for traversal from right to left and from top to bottom. """ | |
return [ ((b, a), indices, f) for (a, b), indices, f in reversed(intervals) ] | |
def _winding_number(T, field): | |
"""Compute the winding number of the input polynomial, i.e. the number of roots. """ | |
return int(sum(field(*_values[t][i]) for t, i in T) / field(2)) | |
def dup_count_complex_roots(f, K, inf=None, sup=None, exclude=None): | |
"""Count all roots in [u + v*I, s + t*I] rectangle using Collins-Krandick algorithm. """ | |
if not K.is_ZZ and not K.is_QQ: | |
raise DomainError("complex root counting is not supported over %s" % K) | |
if K.is_ZZ: | |
R, F = K, K.get_field() | |
else: | |
R, F = K.get_ring(), K | |
f = dup_convert(f, K, F) | |
if inf is None or sup is None: | |
_, lc = dup_degree(f), abs(dup_LC(f, F)) | |
B = 2*max(F.quo(abs(c), lc) for c in f) | |
if inf is None: | |
(u, v) = (-B, -B) | |
else: | |
(u, v) = inf | |
if sup is None: | |
(s, t) = (+B, +B) | |
else: | |
(s, t) = sup | |
f1, f2 = dup_real_imag(f, F) | |
f1L1F = dmp_eval_in(f1, v, 1, 1, F) | |
f2L1F = dmp_eval_in(f2, v, 1, 1, F) | |
_, f1L1R = dup_clear_denoms(f1L1F, F, R, convert=True) | |
_, f2L1R = dup_clear_denoms(f2L1F, F, R, convert=True) | |
f1L2F = dmp_eval_in(f1, s, 0, 1, F) | |
f2L2F = dmp_eval_in(f2, s, 0, 1, F) | |
_, f1L2R = dup_clear_denoms(f1L2F, F, R, convert=True) | |
_, f2L2R = dup_clear_denoms(f2L2F, F, R, convert=True) | |
f1L3F = dmp_eval_in(f1, t, 1, 1, F) | |
f2L3F = dmp_eval_in(f2, t, 1, 1, F) | |
_, f1L3R = dup_clear_denoms(f1L3F, F, R, convert=True) | |
_, f2L3R = dup_clear_denoms(f2L3F, F, R, convert=True) | |
f1L4F = dmp_eval_in(f1, u, 0, 1, F) | |
f2L4F = dmp_eval_in(f2, u, 0, 1, F) | |
_, f1L4R = dup_clear_denoms(f1L4F, F, R, convert=True) | |
_, f2L4R = dup_clear_denoms(f2L4F, F, R, convert=True) | |
S_L1 = [f1L1R, f2L1R] | |
S_L2 = [f1L2R, f2L2R] | |
S_L3 = [f1L3R, f2L3R] | |
S_L4 = [f1L4R, f2L4R] | |
I_L1 = dup_isolate_real_roots_list(S_L1, R, inf=u, sup=s, fast=True, basis=True, strict=True) | |
I_L2 = dup_isolate_real_roots_list(S_L2, R, inf=v, sup=t, fast=True, basis=True, strict=True) | |
I_L3 = dup_isolate_real_roots_list(S_L3, R, inf=u, sup=s, fast=True, basis=True, strict=True) | |
I_L4 = dup_isolate_real_roots_list(S_L4, R, inf=v, sup=t, fast=True, basis=True, strict=True) | |
I_L3 = _reverse_intervals(I_L3) | |
I_L4 = _reverse_intervals(I_L4) | |
Q_L1 = _intervals_to_quadrants(I_L1, f1L1F, f2L1F, u, s, F) | |
Q_L2 = _intervals_to_quadrants(I_L2, f1L2F, f2L2F, v, t, F) | |
Q_L3 = _intervals_to_quadrants(I_L3, f1L3F, f2L3F, s, u, F) | |
Q_L4 = _intervals_to_quadrants(I_L4, f1L4F, f2L4F, t, v, F) | |
T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4, exclude=exclude) | |
return _winding_number(T, F) | |
def _vertical_bisection(N, a, b, I, Q, F1, F2, f1, f2, F): | |
"""Vertical bisection step in Collins-Krandick root isolation algorithm. """ | |
(u, v), (s, t) = a, b | |
I_L1, I_L2, I_L3, I_L4 = I | |
Q_L1, Q_L2, Q_L3, Q_L4 = Q | |
f1L1F, f1L2F, f1L3F, f1L4F = F1 | |
f2L1F, f2L2F, f2L3F, f2L4F = F2 | |
x = (u + s) / 2 | |
f1V = dmp_eval_in(f1, x, 0, 1, F) | |
f2V = dmp_eval_in(f2, x, 0, 1, F) | |
I_V = dup_isolate_real_roots_list([f1V, f2V], F, inf=v, sup=t, fast=True, strict=True, basis=True) | |
I_L1_L, I_L1_R = [], [] | |
I_L2_L, I_L2_R = I_V, I_L2 | |
I_L3_L, I_L3_R = [], [] | |
I_L4_L, I_L4_R = I_L4, _reverse_intervals(I_V) | |
for I in I_L1: | |
(a, b), indices, h = I | |
if a == b: | |
if a == x: | |
I_L1_L.append(I) | |
I_L1_R.append(I) | |
elif a < x: | |
I_L1_L.append(I) | |
else: | |
I_L1_R.append(I) | |
else: | |
if b <= x: | |
I_L1_L.append(I) | |
elif a >= x: | |
I_L1_R.append(I) | |
else: | |
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True) | |
if b <= x: | |
I_L1_L.append(((a, b), indices, h)) | |
if a >= x: | |
I_L1_R.append(((a, b), indices, h)) | |
for I in I_L3: | |
(b, a), indices, h = I | |
if a == b: | |
if a == x: | |
I_L3_L.append(I) | |
I_L3_R.append(I) | |
elif a < x: | |
I_L3_L.append(I) | |
else: | |
I_L3_R.append(I) | |
else: | |
if b <= x: | |
I_L3_L.append(I) | |
elif a >= x: | |
I_L3_R.append(I) | |
else: | |
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=x, fast=True) | |
if b <= x: | |
I_L3_L.append(((b, a), indices, h)) | |
if a >= x: | |
I_L3_R.append(((b, a), indices, h)) | |
Q_L1_L = _intervals_to_quadrants(I_L1_L, f1L1F, f2L1F, u, x, F) | |
Q_L2_L = _intervals_to_quadrants(I_L2_L, f1V, f2V, v, t, F) | |
Q_L3_L = _intervals_to_quadrants(I_L3_L, f1L3F, f2L3F, x, u, F) | |
Q_L4_L = Q_L4 | |
Q_L1_R = _intervals_to_quadrants(I_L1_R, f1L1F, f2L1F, x, s, F) | |
Q_L2_R = Q_L2 | |
Q_L3_R = _intervals_to_quadrants(I_L3_R, f1L3F, f2L3F, s, x, F) | |
Q_L4_R = _intervals_to_quadrants(I_L4_R, f1V, f2V, t, v, F) | |
T_L = _traverse_quadrants(Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L, exclude=True) | |
T_R = _traverse_quadrants(Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R, exclude=True) | |
N_L = _winding_number(T_L, F) | |
N_R = _winding_number(T_R, F) | |
I_L = (I_L1_L, I_L2_L, I_L3_L, I_L4_L) | |
Q_L = (Q_L1_L, Q_L2_L, Q_L3_L, Q_L4_L) | |
I_R = (I_L1_R, I_L2_R, I_L3_R, I_L4_R) | |
Q_R = (Q_L1_R, Q_L2_R, Q_L3_R, Q_L4_R) | |
F1_L = (f1L1F, f1V, f1L3F, f1L4F) | |
F2_L = (f2L1F, f2V, f2L3F, f2L4F) | |
F1_R = (f1L1F, f1L2F, f1L3F, f1V) | |
F2_R = (f2L1F, f2L2F, f2L3F, f2V) | |
a, b = (u, v), (x, t) | |
c, d = (x, v), (s, t) | |
D_L = (N_L, a, b, I_L, Q_L, F1_L, F2_L) | |
D_R = (N_R, c, d, I_R, Q_R, F1_R, F2_R) | |
return D_L, D_R | |
def _horizontal_bisection(N, a, b, I, Q, F1, F2, f1, f2, F): | |
"""Horizontal bisection step in Collins-Krandick root isolation algorithm. """ | |
(u, v), (s, t) = a, b | |
I_L1, I_L2, I_L3, I_L4 = I | |
Q_L1, Q_L2, Q_L3, Q_L4 = Q | |
f1L1F, f1L2F, f1L3F, f1L4F = F1 | |
f2L1F, f2L2F, f2L3F, f2L4F = F2 | |
y = (v + t) / 2 | |
f1H = dmp_eval_in(f1, y, 1, 1, F) | |
f2H = dmp_eval_in(f2, y, 1, 1, F) | |
I_H = dup_isolate_real_roots_list([f1H, f2H], F, inf=u, sup=s, fast=True, strict=True, basis=True) | |
I_L1_B, I_L1_U = I_L1, I_H | |
I_L2_B, I_L2_U = [], [] | |
I_L3_B, I_L3_U = _reverse_intervals(I_H), I_L3 | |
I_L4_B, I_L4_U = [], [] | |
for I in I_L2: | |
(a, b), indices, h = I | |
if a == b: | |
if a == y: | |
I_L2_B.append(I) | |
I_L2_U.append(I) | |
elif a < y: | |
I_L2_B.append(I) | |
else: | |
I_L2_U.append(I) | |
else: | |
if b <= y: | |
I_L2_B.append(I) | |
elif a >= y: | |
I_L2_U.append(I) | |
else: | |
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True) | |
if b <= y: | |
I_L2_B.append(((a, b), indices, h)) | |
if a >= y: | |
I_L2_U.append(((a, b), indices, h)) | |
for I in I_L4: | |
(b, a), indices, h = I | |
if a == b: | |
if a == y: | |
I_L4_B.append(I) | |
I_L4_U.append(I) | |
elif a < y: | |
I_L4_B.append(I) | |
else: | |
I_L4_U.append(I) | |
else: | |
if b <= y: | |
I_L4_B.append(I) | |
elif a >= y: | |
I_L4_U.append(I) | |
else: | |
a, b = dup_refine_real_root(h, a, b, F.get_ring(), disjoint=y, fast=True) | |
if b <= y: | |
I_L4_B.append(((b, a), indices, h)) | |
if a >= y: | |
I_L4_U.append(((b, a), indices, h)) | |
Q_L1_B = Q_L1 | |
Q_L2_B = _intervals_to_quadrants(I_L2_B, f1L2F, f2L2F, v, y, F) | |
Q_L3_B = _intervals_to_quadrants(I_L3_B, f1H, f2H, s, u, F) | |
Q_L4_B = _intervals_to_quadrants(I_L4_B, f1L4F, f2L4F, y, v, F) | |
Q_L1_U = _intervals_to_quadrants(I_L1_U, f1H, f2H, u, s, F) | |
Q_L2_U = _intervals_to_quadrants(I_L2_U, f1L2F, f2L2F, y, t, F) | |
Q_L3_U = Q_L3 | |
Q_L4_U = _intervals_to_quadrants(I_L4_U, f1L4F, f2L4F, t, y, F) | |
T_B = _traverse_quadrants(Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B, exclude=True) | |
T_U = _traverse_quadrants(Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U, exclude=True) | |
N_B = _winding_number(T_B, F) | |
N_U = _winding_number(T_U, F) | |
I_B = (I_L1_B, I_L2_B, I_L3_B, I_L4_B) | |
Q_B = (Q_L1_B, Q_L2_B, Q_L3_B, Q_L4_B) | |
I_U = (I_L1_U, I_L2_U, I_L3_U, I_L4_U) | |
Q_U = (Q_L1_U, Q_L2_U, Q_L3_U, Q_L4_U) | |
F1_B = (f1L1F, f1L2F, f1H, f1L4F) | |
F2_B = (f2L1F, f2L2F, f2H, f2L4F) | |
F1_U = (f1H, f1L2F, f1L3F, f1L4F) | |
F2_U = (f2H, f2L2F, f2L3F, f2L4F) | |
a, b = (u, v), (s, y) | |
c, d = (u, y), (s, t) | |
D_B = (N_B, a, b, I_B, Q_B, F1_B, F2_B) | |
D_U = (N_U, c, d, I_U, Q_U, F1_U, F2_U) | |
return D_B, D_U | |
def _depth_first_select(rectangles): | |
"""Find a rectangle of minimum area for bisection. """ | |
min_area, j = None, None | |
for i, (_, (u, v), (s, t), _, _, _, _) in enumerate(rectangles): | |
area = (s - u)*(t - v) | |
if min_area is None or area < min_area: | |
min_area, j = area, i | |
return rectangles.pop(j) | |
def _rectangle_small_p(a, b, eps): | |
"""Return ``True`` if the given rectangle is small enough. """ | |
(u, v), (s, t) = a, b | |
if eps is not None: | |
return s - u < eps and t - v < eps | |
else: | |
return True | |
def dup_isolate_complex_roots_sqf(f, K, eps=None, inf=None, sup=None, blackbox=False): | |
"""Isolate complex roots of a square-free polynomial using Collins-Krandick algorithm. """ | |
if not K.is_ZZ and not K.is_QQ: | |
raise DomainError("isolation of complex roots is not supported over %s" % K) | |
if dup_degree(f) <= 0: | |
return [] | |
if K.is_ZZ: | |
F = K.get_field() | |
else: | |
F = K | |
f = dup_convert(f, K, F) | |
lc = abs(dup_LC(f, F)) | |
B = 2*max(F.quo(abs(c), lc) for c in f) | |
(u, v), (s, t) = (-B, F.zero), (B, B) | |
if inf is not None: | |
u = inf | |
if sup is not None: | |
s = sup | |
if v < 0 or t <= v or s <= u: | |
raise ValueError("not a valid complex isolation rectangle") | |
f1, f2 = dup_real_imag(f, F) | |
f1L1 = dmp_eval_in(f1, v, 1, 1, F) | |
f2L1 = dmp_eval_in(f2, v, 1, 1, F) | |
f1L2 = dmp_eval_in(f1, s, 0, 1, F) | |
f2L2 = dmp_eval_in(f2, s, 0, 1, F) | |
f1L3 = dmp_eval_in(f1, t, 1, 1, F) | |
f2L3 = dmp_eval_in(f2, t, 1, 1, F) | |
f1L4 = dmp_eval_in(f1, u, 0, 1, F) | |
f2L4 = dmp_eval_in(f2, u, 0, 1, F) | |
S_L1 = [f1L1, f2L1] | |
S_L2 = [f1L2, f2L2] | |
S_L3 = [f1L3, f2L3] | |
S_L4 = [f1L4, f2L4] | |
I_L1 = dup_isolate_real_roots_list(S_L1, F, inf=u, sup=s, fast=True, strict=True, basis=True) | |
I_L2 = dup_isolate_real_roots_list(S_L2, F, inf=v, sup=t, fast=True, strict=True, basis=True) | |
I_L3 = dup_isolate_real_roots_list(S_L3, F, inf=u, sup=s, fast=True, strict=True, basis=True) | |
I_L4 = dup_isolate_real_roots_list(S_L4, F, inf=v, sup=t, fast=True, strict=True, basis=True) | |
I_L3 = _reverse_intervals(I_L3) | |
I_L4 = _reverse_intervals(I_L4) | |
Q_L1 = _intervals_to_quadrants(I_L1, f1L1, f2L1, u, s, F) | |
Q_L2 = _intervals_to_quadrants(I_L2, f1L2, f2L2, v, t, F) | |
Q_L3 = _intervals_to_quadrants(I_L3, f1L3, f2L3, s, u, F) | |
Q_L4 = _intervals_to_quadrants(I_L4, f1L4, f2L4, t, v, F) | |
T = _traverse_quadrants(Q_L1, Q_L2, Q_L3, Q_L4) | |
N = _winding_number(T, F) | |
if not N: | |
return [] | |
I = (I_L1, I_L2, I_L3, I_L4) | |
Q = (Q_L1, Q_L2, Q_L3, Q_L4) | |
F1 = (f1L1, f1L2, f1L3, f1L4) | |
F2 = (f2L1, f2L2, f2L3, f2L4) | |
rectangles, roots = [(N, (u, v), (s, t), I, Q, F1, F2)], [] | |
while rectangles: | |
N, (u, v), (s, t), I, Q, F1, F2 = _depth_first_select(rectangles) | |
if s - u > t - v: | |
D_L, D_R = _vertical_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F) | |
N_L, a, b, I_L, Q_L, F1_L, F2_L = D_L | |
N_R, c, d, I_R, Q_R, F1_R, F2_R = D_R | |
if N_L >= 1: | |
if N_L == 1 and _rectangle_small_p(a, b, eps): | |
roots.append(ComplexInterval(a, b, I_L, Q_L, F1_L, F2_L, f1, f2, F)) | |
else: | |
rectangles.append(D_L) | |
if N_R >= 1: | |
if N_R == 1 and _rectangle_small_p(c, d, eps): | |
roots.append(ComplexInterval(c, d, I_R, Q_R, F1_R, F2_R, f1, f2, F)) | |
else: | |
rectangles.append(D_R) | |
else: | |
D_B, D_U = _horizontal_bisection(N, (u, v), (s, t), I, Q, F1, F2, f1, f2, F) | |
N_B, a, b, I_B, Q_B, F1_B, F2_B = D_B | |
N_U, c, d, I_U, Q_U, F1_U, F2_U = D_U | |
if N_B >= 1: | |
if N_B == 1 and _rectangle_small_p(a, b, eps): | |
roots.append(ComplexInterval( | |
a, b, I_B, Q_B, F1_B, F2_B, f1, f2, F)) | |
else: | |
rectangles.append(D_B) | |
if N_U >= 1: | |
if N_U == 1 and _rectangle_small_p(c, d, eps): | |
roots.append(ComplexInterval( | |
c, d, I_U, Q_U, F1_U, F2_U, f1, f2, F)) | |
else: | |
rectangles.append(D_U) | |
_roots, roots = sorted(roots, key=lambda r: (r.ax, r.ay)), [] | |
for root in _roots: | |
roots.extend([root.conjugate(), root]) | |
if blackbox: | |
return roots | |
else: | |
return [ r.as_tuple() for r in roots ] | |
def dup_isolate_all_roots_sqf(f, K, eps=None, inf=None, sup=None, fast=False, blackbox=False): | |
"""Isolate real and complex roots of a square-free polynomial ``f``. """ | |
return ( | |
dup_isolate_real_roots_sqf( f, K, eps=eps, inf=inf, sup=sup, fast=fast, blackbox=blackbox), | |
dup_isolate_complex_roots_sqf(f, K, eps=eps, inf=inf, sup=sup, blackbox=blackbox)) | |
def dup_isolate_all_roots(f, K, eps=None, inf=None, sup=None, fast=False): | |
"""Isolate real and complex roots of a non-square-free polynomial ``f``. """ | |
if not K.is_ZZ and not K.is_QQ: | |
raise DomainError("isolation of real and complex roots is not supported over %s" % K) | |
_, factors = dup_sqf_list(f, K) | |
if len(factors) == 1: | |
((f, k),) = factors | |
real_part, complex_part = dup_isolate_all_roots_sqf( | |
f, K, eps=eps, inf=inf, sup=sup, fast=fast) | |
real_part = [ ((a, b), k) for (a, b) in real_part ] | |
complex_part = [ ((a, b), k) for (a, b) in complex_part ] | |
return real_part, complex_part | |
else: | |
raise NotImplementedError( "only trivial square-free polynomials are supported") | |
class RealInterval: | |
"""A fully qualified representation of a real isolation interval. """ | |
def __init__(self, data, f, dom): | |
"""Initialize new real interval with complete information. """ | |
if len(data) == 2: | |
s, t = data | |
self.neg = False | |
if s < 0: | |
if t <= 0: | |
f, s, t, self.neg = dup_mirror(f, dom), -t, -s, True | |
else: | |
raise ValueError("Cannot refine a real root in (%s, %s)" % (s, t)) | |
a, b, c, d = _mobius_from_interval((s, t), dom.get_field()) | |
f = dup_transform(f, dup_strip([a, b]), | |
dup_strip([c, d]), dom) | |
self.mobius = a, b, c, d | |
else: | |
self.mobius = data[:-1] | |
self.neg = data[-1] | |
self.f, self.dom = f, dom | |
def func(self): | |
return RealInterval | |
def args(self): | |
i = self | |
return (i.mobius + (i.neg,), i.f, i.dom) | |
def __eq__(self, other): | |
if type(other) is not type(self): | |
return False | |
return self.args == other.args | |
def a(self): | |
"""Return the position of the left end. """ | |
field = self.dom.get_field() | |
a, b, c, d = self.mobius | |
if not self.neg: | |
if a*d < b*c: | |
return field(a, c) | |
return field(b, d) | |
else: | |
if a*d > b*c: | |
return -field(a, c) | |
return -field(b, d) | |
def b(self): | |
"""Return the position of the right end. """ | |
was = self.neg | |
self.neg = not was | |
rv = -self.a | |
self.neg = was | |
return rv | |
def dx(self): | |
"""Return width of the real isolating interval. """ | |
return self.b - self.a | |
def center(self): | |
"""Return the center of the real isolating interval. """ | |
return (self.a + self.b)/2 | |
def max_denom(self): | |
"""Return the largest denominator occurring in either endpoint. """ | |
return max(self.a.denominator, self.b.denominator) | |
def as_tuple(self): | |
"""Return tuple representation of real isolating interval. """ | |
return (self.a, self.b) | |
def __repr__(self): | |
return "(%s, %s)" % (self.a, self.b) | |
def __contains__(self, item): | |
""" | |
Say whether a complex number belongs to this real interval. | |
Parameters | |
========== | |
item : pair (re, im) or number re | |
Either a pair giving the real and imaginary parts of the number, | |
or else a real number. | |
""" | |
if isinstance(item, tuple): | |
re, im = item | |
else: | |
re, im = item, 0 | |
return im == 0 and self.a <= re <= self.b | |
def is_disjoint(self, other): | |
"""Return ``True`` if two isolation intervals are disjoint. """ | |
if isinstance(other, RealInterval): | |
return (self.b < other.a or other.b < self.a) | |
assert isinstance(other, ComplexInterval) | |
return (self.b < other.ax or other.bx < self.a | |
or other.ay*other.by > 0) | |
def _inner_refine(self): | |
"""Internal one step real root refinement procedure. """ | |
if self.mobius is None: | |
return self | |
f, mobius = dup_inner_refine_real_root( | |
self.f, self.mobius, self.dom, steps=1, mobius=True) | |
return RealInterval(mobius + (self.neg,), f, self.dom) | |
def refine_disjoint(self, other): | |
"""Refine an isolating interval until it is disjoint with another one. """ | |
expr = self | |
while not expr.is_disjoint(other): | |
expr, other = expr._inner_refine(), other._inner_refine() | |
return expr, other | |
def refine_size(self, dx): | |
"""Refine an isolating interval until it is of sufficiently small size. """ | |
expr = self | |
while not (expr.dx < dx): | |
expr = expr._inner_refine() | |
return expr | |
def refine_step(self, steps=1): | |
"""Perform several steps of real root refinement algorithm. """ | |
expr = self | |
for _ in range(steps): | |
expr = expr._inner_refine() | |
return expr | |
def refine(self): | |
"""Perform one step of real root refinement algorithm. """ | |
return self._inner_refine() | |
class ComplexInterval: | |
"""A fully qualified representation of a complex isolation interval. | |
The printed form is shown as (ax, bx) x (ay, by) where (ax, ay) | |
and (bx, by) are the coordinates of the southwest and northeast | |
corners of the interval's rectangle, respectively. | |
Examples | |
======== | |
>>> from sympy import CRootOf, S | |
>>> from sympy.abc import x | |
>>> CRootOf.clear_cache() # for doctest reproducibility | |
>>> root = CRootOf(x**10 - 2*x + 3, 9) | |
>>> i = root._get_interval(); i | |
(3/64, 3/32) x (9/8, 75/64) | |
The real part of the root lies within the range [0, 3/4] while | |
the imaginary part lies within the range [9/8, 3/2]: | |
>>> root.n(3) | |
0.0766 + 1.14*I | |
The width of the ranges in the x and y directions on the complex | |
plane are: | |
>>> i.dx, i.dy | |
(3/64, 3/64) | |
The center of the range is | |
>>> i.center | |
(9/128, 147/128) | |
The northeast coordinate of the rectangle bounding the root in the | |
complex plane is given by attribute b and the x and y components | |
are accessed by bx and by: | |
>>> i.b, i.bx, i.by | |
((3/32, 75/64), 3/32, 75/64) | |
The southwest coordinate is similarly given by i.a | |
>>> i.a, i.ax, i.ay | |
((3/64, 9/8), 3/64, 9/8) | |
Although the interval prints to show only the real and imaginary | |
range of the root, all the information of the underlying root | |
is contained as properties of the interval. | |
For example, an interval with a nonpositive imaginary range is | |
considered to be the conjugate. Since the y values of y are in the | |
range [0, 1/4] it is not the conjugate: | |
>>> i.conj | |
False | |
The conjugate's interval is | |
>>> ic = i.conjugate(); ic | |
(3/64, 3/32) x (-75/64, -9/8) | |
NOTE: the values printed still represent the x and y range | |
in which the root -- conjugate, in this case -- is located, | |
but the underlying a and b values of a root and its conjugate | |
are the same: | |
>>> assert i.a == ic.a and i.b == ic.b | |
What changes are the reported coordinates of the bounding rectangle: | |
>>> (i.ax, i.ay), (i.bx, i.by) | |
((3/64, 9/8), (3/32, 75/64)) | |
>>> (ic.ax, ic.ay), (ic.bx, ic.by) | |
((3/64, -75/64), (3/32, -9/8)) | |
The interval can be refined once: | |
>>> i # for reference, this is the current interval | |
(3/64, 3/32) x (9/8, 75/64) | |
>>> i.refine() | |
(3/64, 3/32) x (9/8, 147/128) | |
Several refinement steps can be taken: | |
>>> i.refine_step(2) # 2 steps | |
(9/128, 3/32) x (9/8, 147/128) | |
It is also possible to refine to a given tolerance: | |
>>> tol = min(i.dx, i.dy)/2 | |
>>> i.refine_size(tol) | |
(9/128, 21/256) x (9/8, 291/256) | |
A disjoint interval is one whose bounding rectangle does not | |
overlap with another. An interval, necessarily, is not disjoint with | |
itself, but any interval is disjoint with a conjugate since the | |
conjugate rectangle will always be in the lower half of the complex | |
plane and the non-conjugate in the upper half: | |
>>> i.is_disjoint(i), i.is_disjoint(i.conjugate()) | |
(False, True) | |
The following interval j is not disjoint from i: | |
>>> close = CRootOf(x**10 - 2*x + 300/S(101), 9) | |
>>> j = close._get_interval(); j | |
(75/1616, 75/808) x (225/202, 1875/1616) | |
>>> i.is_disjoint(j) | |
False | |
The two can be made disjoint, however: | |
>>> newi, newj = i.refine_disjoint(j) | |
>>> newi | |
(39/512, 159/2048) x (2325/2048, 4653/4096) | |
>>> newj | |
(3975/51712, 2025/25856) x (29325/25856, 117375/103424) | |
Even though the real ranges overlap, the imaginary do not, so | |
the roots have been resolved as distinct. Intervals are disjoint | |
when either the real or imaginary component of the intervals is | |
distinct. In the case above, the real components have not been | |
resolved (so we do not know, yet, which root has the smaller real | |
part) but the imaginary part of ``close`` is larger than ``root``: | |
>>> close.n(3) | |
0.0771 + 1.13*I | |
>>> root.n(3) | |
0.0766 + 1.14*I | |
""" | |
def __init__(self, a, b, I, Q, F1, F2, f1, f2, dom, conj=False): | |
"""Initialize new complex interval with complete information. """ | |
# a and b are the SW and NE corner of the bounding interval, | |
# (ax, ay) and (bx, by), respectively, for the NON-CONJUGATE | |
# root (the one with the positive imaginary part); when working | |
# with the conjugate, the a and b value are still non-negative | |
# but the ay, by are reversed and have oppositite sign | |
self.a, self.b = a, b | |
self.I, self.Q = I, Q | |
self.f1, self.F1 = f1, F1 | |
self.f2, self.F2 = f2, F2 | |
self.dom = dom | |
self.conj = conj | |
def func(self): | |
return ComplexInterval | |
def args(self): | |
i = self | |
return (i.a, i.b, i.I, i.Q, i.F1, i.F2, i.f1, i.f2, i.dom, i.conj) | |
def __eq__(self, other): | |
if type(other) is not type(self): | |
return False | |
return self.args == other.args | |
def ax(self): | |
"""Return ``x`` coordinate of south-western corner. """ | |
return self.a[0] | |
def ay(self): | |
"""Return ``y`` coordinate of south-western corner. """ | |
if not self.conj: | |
return self.a[1] | |
else: | |
return -self.b[1] | |
def bx(self): | |
"""Return ``x`` coordinate of north-eastern corner. """ | |
return self.b[0] | |
def by(self): | |
"""Return ``y`` coordinate of north-eastern corner. """ | |
if not self.conj: | |
return self.b[1] | |
else: | |
return -self.a[1] | |
def dx(self): | |
"""Return width of the complex isolating interval. """ | |
return self.b[0] - self.a[0] | |
def dy(self): | |
"""Return height of the complex isolating interval. """ | |
return self.b[1] - self.a[1] | |
def center(self): | |
"""Return the center of the complex isolating interval. """ | |
return ((self.ax + self.bx)/2, (self.ay + self.by)/2) | |
def max_denom(self): | |
"""Return the largest denominator occurring in either endpoint. """ | |
return max(self.ax.denominator, self.bx.denominator, | |
self.ay.denominator, self.by.denominator) | |
def as_tuple(self): | |
"""Return tuple representation of the complex isolating | |
interval's SW and NE corners, respectively. """ | |
return ((self.ax, self.ay), (self.bx, self.by)) | |
def __repr__(self): | |
return "(%s, %s) x (%s, %s)" % (self.ax, self.bx, self.ay, self.by) | |
def conjugate(self): | |
"""This complex interval really is located in lower half-plane. """ | |
return ComplexInterval(self.a, self.b, self.I, self.Q, | |
self.F1, self.F2, self.f1, self.f2, self.dom, conj=True) | |
def __contains__(self, item): | |
""" | |
Say whether a complex number belongs to this complex rectangular | |
region. | |
Parameters | |
========== | |
item : pair (re, im) or number re | |
Either a pair giving the real and imaginary parts of the number, | |
or else a real number. | |
""" | |
if isinstance(item, tuple): | |
re, im = item | |
else: | |
re, im = item, 0 | |
return self.ax <= re <= self.bx and self.ay <= im <= self.by | |
def is_disjoint(self, other): | |
"""Return ``True`` if two isolation intervals are disjoint. """ | |
if isinstance(other, RealInterval): | |
return other.is_disjoint(self) | |
if self.conj != other.conj: # above and below real axis | |
return True | |
re_distinct = (self.bx < other.ax or other.bx < self.ax) | |
if re_distinct: | |
return True | |
im_distinct = (self.by < other.ay or other.by < self.ay) | |
return im_distinct | |
def _inner_refine(self): | |
"""Internal one step complex root refinement procedure. """ | |
(u, v), (s, t) = self.a, self.b | |
I, Q = self.I, self.Q | |
f1, F1 = self.f1, self.F1 | |
f2, F2 = self.f2, self.F2 | |
dom = self.dom | |
if s - u > t - v: | |
D_L, D_R = _vertical_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom) | |
if D_L[0] == 1: | |
_, a, b, I, Q, F1, F2 = D_L | |
else: | |
_, a, b, I, Q, F1, F2 = D_R | |
else: | |
D_B, D_U = _horizontal_bisection(1, (u, v), (s, t), I, Q, F1, F2, f1, f2, dom) | |
if D_B[0] == 1: | |
_, a, b, I, Q, F1, F2 = D_B | |
else: | |
_, a, b, I, Q, F1, F2 = D_U | |
return ComplexInterval(a, b, I, Q, F1, F2, f1, f2, dom, self.conj) | |
def refine_disjoint(self, other): | |
"""Refine an isolating interval until it is disjoint with another one. """ | |
expr = self | |
while not expr.is_disjoint(other): | |
expr, other = expr._inner_refine(), other._inner_refine() | |
return expr, other | |
def refine_size(self, dx, dy=None): | |
"""Refine an isolating interval until it is of sufficiently small size. """ | |
if dy is None: | |
dy = dx | |
expr = self | |
while not (expr.dx < dx and expr.dy < dy): | |
expr = expr._inner_refine() | |
return expr | |
def refine_step(self, steps=1): | |
"""Perform several steps of complex root refinement algorithm. """ | |
expr = self | |
for _ in range(steps): | |
expr = expr._inner_refine() | |
return expr | |
def refine(self): | |
"""Perform one step of complex root refinement algorithm. """ | |
return self._inner_refine() | |