Spaces:
Running
Running
"""High-level polynomials manipulation functions. """ | |
from sympy.core import S, Basic, symbols, Dummy | |
from sympy.polys.polyerrors import ( | |
PolificationFailed, ComputationFailed, | |
MultivariatePolynomialError, OptionError) | |
from sympy.polys.polyoptions import allowed_flags, build_options | |
from sympy.polys.polytools import poly_from_expr, Poly | |
from sympy.polys.specialpolys import ( | |
symmetric_poly, interpolating_poly) | |
from sympy.polys.rings import sring | |
from sympy.utilities import numbered_symbols, take, public | |
def symmetrize(F, *gens, **args): | |
r""" | |
Rewrite a polynomial in terms of elementary symmetric polynomials. | |
A symmetric polynomial is a multivariate polynomial that remains invariant | |
under any variable permutation, i.e., if `f = f(x_1, x_2, \dots, x_n)`, | |
then `f = f(x_{i_1}, x_{i_2}, \dots, x_{i_n})`, where | |
`(i_1, i_2, \dots, i_n)` is a permutation of `(1, 2, \dots, n)` (an | |
element of the group `S_n`). | |
Returns a tuple of symmetric polynomials ``(f1, f2, ..., fn)`` such that | |
``f = f1 + f2 + ... + fn``. | |
Examples | |
======== | |
>>> from sympy.polys.polyfuncs import symmetrize | |
>>> from sympy.abc import x, y | |
>>> symmetrize(x**2 + y**2) | |
(-2*x*y + (x + y)**2, 0) | |
>>> symmetrize(x**2 + y**2, formal=True) | |
(s1**2 - 2*s2, 0, [(s1, x + y), (s2, x*y)]) | |
>>> symmetrize(x**2 - y**2) | |
(-2*x*y + (x + y)**2, -2*y**2) | |
>>> symmetrize(x**2 - y**2, formal=True) | |
(s1**2 - 2*s2, -2*y**2, [(s1, x + y), (s2, x*y)]) | |
""" | |
allowed_flags(args, ['formal', 'symbols']) | |
iterable = True | |
if not hasattr(F, '__iter__'): | |
iterable = False | |
F = [F] | |
R, F = sring(F, *gens, **args) | |
gens = R.symbols | |
opt = build_options(gens, args) | |
symbols = opt.symbols | |
symbols = [next(symbols) for i in range(len(gens))] | |
result = [] | |
for f in F: | |
p, r, m = f.symmetrize() | |
result.append((p.as_expr(*symbols), r.as_expr(*gens))) | |
polys = [(s, g.as_expr()) for s, (_, g) in zip(symbols, m)] | |
if not opt.formal: | |
for i, (sym, non_sym) in enumerate(result): | |
result[i] = (sym.subs(polys), non_sym) | |
if not iterable: | |
result, = result | |
if not opt.formal: | |
return result | |
else: | |
if iterable: | |
return result, polys | |
else: | |
return result + (polys,) | |
def horner(f, *gens, **args): | |
""" | |
Rewrite a polynomial in Horner form. | |
Among other applications, evaluation of a polynomial at a point is optimal | |
when it is applied using the Horner scheme ([1]). | |
Examples | |
======== | |
>>> from sympy.polys.polyfuncs import horner | |
>>> from sympy.abc import x, y, a, b, c, d, e | |
>>> horner(9*x**4 + 8*x**3 + 7*x**2 + 6*x + 5) | |
x*(x*(x*(9*x + 8) + 7) + 6) + 5 | |
>>> horner(a*x**4 + b*x**3 + c*x**2 + d*x + e) | |
e + x*(d + x*(c + x*(a*x + b))) | |
>>> f = 4*x**2*y**2 + 2*x**2*y + 2*x*y**2 + x*y | |
>>> horner(f, wrt=x) | |
x*(x*y*(4*y + 2) + y*(2*y + 1)) | |
>>> horner(f, wrt=y) | |
y*(x*y*(4*x + 2) + x*(2*x + 1)) | |
References | |
========== | |
[1] - https://en.wikipedia.org/wiki/Horner_scheme | |
""" | |
allowed_flags(args, []) | |
try: | |
F, opt = poly_from_expr(f, *gens, **args) | |
except PolificationFailed as exc: | |
return exc.expr | |
form, gen = S.Zero, F.gen | |
if F.is_univariate: | |
for coeff in F.all_coeffs(): | |
form = form*gen + coeff | |
else: | |
F, gens = Poly(F, gen), gens[1:] | |
for coeff in F.all_coeffs(): | |
form = form*gen + horner(coeff, *gens, **args) | |
return form | |
def interpolate(data, x): | |
""" | |
Construct an interpolating polynomial for the data points | |
evaluated at point x (which can be symbolic or numeric). | |
Examples | |
======== | |
>>> from sympy.polys.polyfuncs import interpolate | |
>>> from sympy.abc import a, b, x | |
A list is interpreted as though it were paired with a range starting | |
from 1: | |
>>> interpolate([1, 4, 9, 16], x) | |
x**2 | |
This can be made explicit by giving a list of coordinates: | |
>>> interpolate([(1, 1), (2, 4), (3, 9)], x) | |
x**2 | |
The (x, y) coordinates can also be given as keys and values of a | |
dictionary (and the points need not be equispaced): | |
>>> interpolate([(-1, 2), (1, 2), (2, 5)], x) | |
x**2 + 1 | |
>>> interpolate({-1: 2, 1: 2, 2: 5}, x) | |
x**2 + 1 | |
If the interpolation is going to be used only once then the | |
value of interest can be passed instead of passing a symbol: | |
>>> interpolate([1, 4, 9], 5) | |
25 | |
Symbolic coordinates are also supported: | |
>>> [(i,interpolate((a, b), i)) for i in range(1, 4)] | |
[(1, a), (2, b), (3, -a + 2*b)] | |
""" | |
n = len(data) | |
if isinstance(data, dict): | |
if x in data: | |
return S(data[x]) | |
X, Y = list(zip(*data.items())) | |
else: | |
if isinstance(data[0], tuple): | |
X, Y = list(zip(*data)) | |
if x in X: | |
return S(Y[X.index(x)]) | |
else: | |
if x in range(1, n + 1): | |
return S(data[x - 1]) | |
Y = list(data) | |
X = list(range(1, n + 1)) | |
try: | |
return interpolating_poly(n, x, X, Y).expand() | |
except ValueError: | |
d = Dummy() | |
return interpolating_poly(n, d, X, Y).expand().subs(d, x) | |
def rational_interpolate(data, degnum, X=symbols('x')): | |
""" | |
Returns a rational interpolation, where the data points are element of | |
any integral domain. | |
The first argument contains the data (as a list of coordinates). The | |
``degnum`` argument is the degree in the numerator of the rational | |
function. Setting it too high will decrease the maximal degree in the | |
denominator for the same amount of data. | |
Examples | |
======== | |
>>> from sympy.polys.polyfuncs import rational_interpolate | |
>>> data = [(1, -210), (2, -35), (3, 105), (4, 231), (5, 350), (6, 465)] | |
>>> rational_interpolate(data, 2) | |
(105*x**2 - 525)/(x + 1) | |
Values do not need to be integers: | |
>>> from sympy import sympify | |
>>> x = [1, 2, 3, 4, 5, 6] | |
>>> y = sympify("[-1, 0, 2, 22/5, 7, 68/7]") | |
>>> rational_interpolate(zip(x, y), 2) | |
(3*x**2 - 7*x + 2)/(x + 1) | |
The symbol for the variable can be changed if needed: | |
>>> from sympy import symbols | |
>>> z = symbols('z') | |
>>> rational_interpolate(data, 2, X=z) | |
(105*z**2 - 525)/(z + 1) | |
References | |
========== | |
.. [1] Algorithm is adapted from: | |
http://axiom-wiki.newsynthesis.org/RationalInterpolation | |
""" | |
from sympy.matrices.dense import ones | |
xdata, ydata = list(zip(*data)) | |
k = len(xdata) - degnum - 1 | |
if k < 0: | |
raise OptionError("Too few values for the required degree.") | |
c = ones(degnum + k + 1, degnum + k + 2) | |
for j in range(max(degnum, k)): | |
for i in range(degnum + k + 1): | |
c[i, j + 1] = c[i, j]*xdata[i] | |
for j in range(k + 1): | |
for i in range(degnum + k + 1): | |
c[i, degnum + k + 1 - j] = -c[i, k - j]*ydata[i] | |
r = c.nullspace()[0] | |
return (sum(r[i] * X**i for i in range(degnum + 1)) | |
/ sum(r[i + degnum + 1] * X**i for i in range(k + 1))) | |
def viete(f, roots=None, *gens, **args): | |
""" | |
Generate Viete's formulas for ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.polyfuncs import viete | |
>>> from sympy import symbols | |
>>> x, a, b, c, r1, r2 = symbols('x,a:c,r1:3') | |
>>> viete(a*x**2 + b*x + c, [r1, r2], x) | |
[(r1 + r2, -b/a), (r1*r2, c/a)] | |
""" | |
allowed_flags(args, []) | |
if isinstance(roots, Basic): | |
gens, roots = (roots,) + gens, None | |
try: | |
f, opt = poly_from_expr(f, *gens, **args) | |
except PolificationFailed as exc: | |
raise ComputationFailed('viete', 1, exc) | |
if f.is_multivariate: | |
raise MultivariatePolynomialError( | |
"multivariate polynomials are not allowed") | |
n = f.degree() | |
if n < 1: | |
raise ValueError( | |
"Cannot derive Viete's formulas for a constant polynomial") | |
if roots is None: | |
roots = numbered_symbols('r', start=1) | |
roots = take(roots, n) | |
if n != len(roots): | |
raise ValueError("required %s roots, got %s" % (n, len(roots))) | |
lc, coeffs = f.LC(), f.all_coeffs() | |
result, sign = [], -1 | |
for i, coeff in enumerate(coeffs[1:]): | |
poly = symmetric_poly(i + 1, roots) | |
coeff = sign*(coeff/lc) | |
result.append((poly, coeff)) | |
sign = -sign | |
return result | |