Spaces:
Running
Running
"""Algorithms for partial fraction decomposition of rational functions. """ | |
from sympy.core import S, Add, sympify, Function, Lambda, Dummy | |
from sympy.core.traversal import preorder_traversal | |
from sympy.polys import Poly, RootSum, cancel, factor | |
from sympy.polys.polyerrors import PolynomialError | |
from sympy.polys.polyoptions import allowed_flags, set_defaults | |
from sympy.polys.polytools import parallel_poly_from_expr | |
from sympy.utilities import numbered_symbols, take, xthreaded, public | |
def apart(f, x=None, full=False, **options): | |
""" | |
Compute partial fraction decomposition of a rational function. | |
Given a rational function ``f``, computes the partial fraction | |
decomposition of ``f``. Two algorithms are available: One is based on the | |
undertermined coefficients method, the other is Bronstein's full partial | |
fraction decomposition algorithm. | |
The undetermined coefficients method (selected by ``full=False``) uses | |
polynomial factorization (and therefore accepts the same options as | |
factor) for the denominator. Per default it works over the rational | |
numbers, therefore decomposition of denominators with non-rational roots | |
(e.g. irrational, complex roots) is not supported by default (see options | |
of factor). | |
Bronstein's algorithm can be selected by using ``full=True`` and allows a | |
decomposition of denominators with non-rational roots. A human-readable | |
result can be obtained via ``doit()`` (see examples below). | |
Examples | |
======== | |
>>> from sympy.polys.partfrac import apart | |
>>> from sympy.abc import x, y | |
By default, using the undetermined coefficients method: | |
>>> apart(y/(x + 2)/(x + 1), x) | |
-y/(x + 2) + y/(x + 1) | |
The undetermined coefficients method does not provide a result when the | |
denominators roots are not rational: | |
>>> apart(y/(x**2 + x + 1), x) | |
y/(x**2 + x + 1) | |
You can choose Bronstein's algorithm by setting ``full=True``: | |
>>> apart(y/(x**2 + x + 1), x, full=True) | |
RootSum(_w**2 + _w + 1, Lambda(_a, (-2*_a*y/3 - y/3)/(-_a + x))) | |
Calling ``doit()`` yields a human-readable result: | |
>>> apart(y/(x**2 + x + 1), x, full=True).doit() | |
(-y/3 - 2*y*(-1/2 - sqrt(3)*I/2)/3)/(x + 1/2 + sqrt(3)*I/2) + (-y/3 - | |
2*y*(-1/2 + sqrt(3)*I/2)/3)/(x + 1/2 - sqrt(3)*I/2) | |
See Also | |
======== | |
apart_list, assemble_partfrac_list | |
""" | |
allowed_flags(options, []) | |
f = sympify(f) | |
if f.is_Atom: | |
return f | |
else: | |
P, Q = f.as_numer_denom() | |
_options = options.copy() | |
options = set_defaults(options, extension=True) | |
try: | |
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options) | |
except PolynomialError as msg: | |
if f.is_commutative: | |
raise PolynomialError(msg) | |
# non-commutative | |
if f.is_Mul: | |
c, nc = f.args_cnc(split_1=False) | |
nc = f.func(*nc) | |
if c: | |
c = apart(f.func._from_args(c), x=x, full=full, **_options) | |
return c*nc | |
else: | |
return nc | |
elif f.is_Add: | |
c = [] | |
nc = [] | |
for i in f.args: | |
if i.is_commutative: | |
c.append(i) | |
else: | |
try: | |
nc.append(apart(i, x=x, full=full, **_options)) | |
except NotImplementedError: | |
nc.append(i) | |
return apart(f.func(*c), x=x, full=full, **_options) + f.func(*nc) | |
else: | |
reps = [] | |
pot = preorder_traversal(f) | |
next(pot) | |
for e in pot: | |
try: | |
reps.append((e, apart(e, x=x, full=full, **_options))) | |
pot.skip() # this was handled successfully | |
except NotImplementedError: | |
pass | |
return f.xreplace(dict(reps)) | |
if P.is_multivariate: | |
fc = f.cancel() | |
if fc != f: | |
return apart(fc, x=x, full=full, **_options) | |
raise NotImplementedError( | |
"multivariate partial fraction decomposition") | |
common, P, Q = P.cancel(Q) | |
poly, P = P.div(Q, auto=True) | |
P, Q = P.rat_clear_denoms(Q) | |
if Q.degree() <= 1: | |
partial = P/Q | |
else: | |
if not full: | |
partial = apart_undetermined_coeffs(P, Q) | |
else: | |
partial = apart_full_decomposition(P, Q) | |
terms = S.Zero | |
for term in Add.make_args(partial): | |
if term.has(RootSum): | |
terms += term | |
else: | |
terms += factor(term) | |
return common*(poly.as_expr() + terms) | |
def apart_undetermined_coeffs(P, Q): | |
"""Partial fractions via method of undetermined coefficients. """ | |
X = numbered_symbols(cls=Dummy) | |
partial, symbols = [], [] | |
_, factors = Q.factor_list() | |
for f, k in factors: | |
n, q = f.degree(), Q | |
for i in range(1, k + 1): | |
coeffs, q = take(X, n), q.quo(f) | |
partial.append((coeffs, q, f, i)) | |
symbols.extend(coeffs) | |
dom = Q.get_domain().inject(*symbols) | |
F = Poly(0, Q.gen, domain=dom) | |
for i, (coeffs, q, f, k) in enumerate(partial): | |
h = Poly(coeffs, Q.gen, domain=dom) | |
partial[i] = (h, f, k) | |
q = q.set_domain(dom) | |
F += h*q | |
system, result = [], S.Zero | |
for (k,), coeff in F.terms(): | |
system.append(coeff - P.nth(k)) | |
from sympy.solvers import solve | |
solution = solve(system, symbols) | |
for h, f, k in partial: | |
h = h.as_expr().subs(solution) | |
result += h/f.as_expr()**k | |
return result | |
def apart_full_decomposition(P, Q): | |
""" | |
Bronstein's full partial fraction decomposition algorithm. | |
Given a univariate rational function ``f``, performing only GCD | |
operations over the algebraic closure of the initial ground domain | |
of definition, compute full partial fraction decomposition with | |
fractions having linear denominators. | |
Note that no factorization of the initial denominator of ``f`` is | |
performed. The final decomposition is formed in terms of a sum of | |
:class:`RootSum` instances. | |
References | |
========== | |
.. [1] [Bronstein93]_ | |
""" | |
return assemble_partfrac_list(apart_list(P/Q, P.gens[0])) | |
def apart_list(f, x=None, dummies=None, **options): | |
""" | |
Compute partial fraction decomposition of a rational function | |
and return the result in structured form. | |
Given a rational function ``f`` compute the partial fraction decomposition | |
of ``f``. Only Bronstein's full partial fraction decomposition algorithm | |
is supported by this method. The return value is highly structured and | |
perfectly suited for further algorithmic treatment rather than being | |
human-readable. The function returns a tuple holding three elements: | |
* The first item is the common coefficient, free of the variable `x` used | |
for decomposition. (It is an element of the base field `K`.) | |
* The second item is the polynomial part of the decomposition. This can be | |
the zero polynomial. (It is an element of `K[x]`.) | |
* The third part itself is a list of quadruples. Each quadruple | |
has the following elements in this order: | |
- The (not necessarily irreducible) polynomial `D` whose roots `w_i` appear | |
in the linear denominator of a bunch of related fraction terms. (This item | |
can also be a list of explicit roots. However, at the moment ``apart_list`` | |
never returns a result this way, but the related ``assemble_partfrac_list`` | |
function accepts this format as input.) | |
- The numerator of the fraction, written as a function of the root `w` | |
- The linear denominator of the fraction *excluding its power exponent*, | |
written as a function of the root `w`. | |
- The power to which the denominator has to be raised. | |
On can always rebuild a plain expression by using the function ``assemble_partfrac_list``. | |
Examples | |
======== | |
A first example: | |
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list | |
>>> from sympy.abc import x, t | |
>>> f = (2*x**3 - 2*x) / (x**2 - 2*x + 1) | |
>>> pfd = apart_list(f) | |
>>> pfd | |
(1, | |
Poly(2*x + 4, x, domain='ZZ'), | |
[(Poly(_w - 1, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1)]) | |
>>> assemble_partfrac_list(pfd) | |
2*x + 4 + 4/(x - 1) | |
Second example: | |
>>> f = (-2*x - 2*x**2) / (3*x**2 - 6*x) | |
>>> pfd = apart_list(f) | |
>>> pfd | |
(-1, | |
Poly(2/3, x, domain='QQ'), | |
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 2), Lambda(_a, -_a + x), 1)]) | |
>>> assemble_partfrac_list(pfd) | |
-2/3 - 2/(x - 2) | |
Another example, showing symbolic parameters: | |
>>> pfd = apart_list(t/(x**2 + x + t), x) | |
>>> pfd | |
(1, | |
Poly(0, x, domain='ZZ[t]'), | |
[(Poly(_w**2 + _w + t, _w, domain='ZZ[t]'), | |
Lambda(_a, -2*_a*t/(4*t - 1) - t/(4*t - 1)), | |
Lambda(_a, -_a + x), | |
1)]) | |
>>> assemble_partfrac_list(pfd) | |
RootSum(_w**2 + _w + t, Lambda(_a, (-2*_a*t/(4*t - 1) - t/(4*t - 1))/(-_a + x))) | |
This example is taken from Bronstein's original paper: | |
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) | |
>>> pfd = apart_list(f) | |
>>> pfd | |
(1, | |
Poly(0, x, domain='ZZ'), | |
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), | |
(Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), | |
(Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)]) | |
>>> assemble_partfrac_list(pfd) | |
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2) | |
See also | |
======== | |
apart, assemble_partfrac_list | |
References | |
========== | |
.. [1] [Bronstein93]_ | |
""" | |
allowed_flags(options, []) | |
f = sympify(f) | |
if f.is_Atom: | |
return f | |
else: | |
P, Q = f.as_numer_denom() | |
options = set_defaults(options, extension=True) | |
(P, Q), opt = parallel_poly_from_expr((P, Q), x, **options) | |
if P.is_multivariate: | |
raise NotImplementedError( | |
"multivariate partial fraction decomposition") | |
common, P, Q = P.cancel(Q) | |
poly, P = P.div(Q, auto=True) | |
P, Q = P.rat_clear_denoms(Q) | |
polypart = poly | |
if dummies is None: | |
def dummies(name): | |
d = Dummy(name) | |
while True: | |
yield d | |
dummies = dummies("w") | |
rationalpart = apart_list_full_decomposition(P, Q, dummies) | |
return (common, polypart, rationalpart) | |
def apart_list_full_decomposition(P, Q, dummygen): | |
""" | |
Bronstein's full partial fraction decomposition algorithm. | |
Given a univariate rational function ``f``, performing only GCD | |
operations over the algebraic closure of the initial ground domain | |
of definition, compute full partial fraction decomposition with | |
fractions having linear denominators. | |
Note that no factorization of the initial denominator of ``f`` is | |
performed. The final decomposition is formed in terms of a sum of | |
:class:`RootSum` instances. | |
References | |
========== | |
.. [1] [Bronstein93]_ | |
""" | |
P_orig, Q_orig, x, U = P, Q, P.gen, [] | |
u = Function('u')(x) | |
a = Dummy('a') | |
partial = [] | |
for d, n in Q.sqf_list_include(all=True): | |
b = d.as_expr() | |
U += [ u.diff(x, n - 1) ] | |
h = cancel(P_orig/Q_orig.quo(d**n)) / u**n | |
H, subs = [h], [] | |
for j in range(1, n): | |
H += [ H[-1].diff(x) / j ] | |
for j in range(1, n + 1): | |
subs += [ (U[j - 1], b.diff(x, j) / j) ] | |
for j in range(0, n): | |
P, Q = cancel(H[j]).as_numer_denom() | |
for i in range(0, j + 1): | |
P = P.subs(*subs[j - i]) | |
Q = Q.subs(*subs[0]) | |
P = Poly(P, x) | |
Q = Poly(Q, x) | |
G = P.gcd(d) | |
D = d.quo(G) | |
B, g = Q.half_gcdex(D) | |
b = (P * B.quo(g)).rem(D) | |
Dw = D.subs(x, next(dummygen)) | |
numer = Lambda(a, b.as_expr().subs(x, a)) | |
denom = Lambda(a, (x - a)) | |
exponent = n-j | |
partial.append((Dw, numer, denom, exponent)) | |
return partial | |
def assemble_partfrac_list(partial_list): | |
r"""Reassemble a full partial fraction decomposition | |
from a structured result obtained by the function ``apart_list``. | |
Examples | |
======== | |
This example is taken from Bronstein's original paper: | |
>>> from sympy.polys.partfrac import apart_list, assemble_partfrac_list | |
>>> from sympy.abc import x | |
>>> f = 36 / (x**5 - 2*x**4 - 2*x**3 + 4*x**2 + x - 2) | |
>>> pfd = apart_list(f) | |
>>> pfd | |
(1, | |
Poly(0, x, domain='ZZ'), | |
[(Poly(_w - 2, _w, domain='ZZ'), Lambda(_a, 4), Lambda(_a, -_a + x), 1), | |
(Poly(_w**2 - 1, _w, domain='ZZ'), Lambda(_a, -3*_a - 6), Lambda(_a, -_a + x), 2), | |
(Poly(_w + 1, _w, domain='ZZ'), Lambda(_a, -4), Lambda(_a, -_a + x), 1)]) | |
>>> assemble_partfrac_list(pfd) | |
-4/(x + 1) - 3/(x + 1)**2 - 9/(x - 1)**2 + 4/(x - 2) | |
If we happen to know some roots we can provide them easily inside the structure: | |
>>> pfd = apart_list(2/(x**2-2)) | |
>>> pfd | |
(1, | |
Poly(0, x, domain='ZZ'), | |
[(Poly(_w**2 - 2, _w, domain='ZZ'), | |
Lambda(_a, _a/2), | |
Lambda(_a, -_a + x), | |
1)]) | |
>>> pfda = assemble_partfrac_list(pfd) | |
>>> pfda | |
RootSum(_w**2 - 2, Lambda(_a, _a/(-_a + x)))/2 | |
>>> pfda.doit() | |
-sqrt(2)/(2*(x + sqrt(2))) + sqrt(2)/(2*(x - sqrt(2))) | |
>>> from sympy import Dummy, Poly, Lambda, sqrt | |
>>> a = Dummy("a") | |
>>> pfd = (1, Poly(0, x, domain='ZZ'), [([sqrt(2),-sqrt(2)], Lambda(a, a/2), Lambda(a, -a + x), 1)]) | |
>>> assemble_partfrac_list(pfd) | |
-sqrt(2)/(2*(x + sqrt(2))) + sqrt(2)/(2*(x - sqrt(2))) | |
See Also | |
======== | |
apart, apart_list | |
""" | |
# Common factor | |
common = partial_list[0] | |
# Polynomial part | |
polypart = partial_list[1] | |
pfd = polypart.as_expr() | |
# Rational parts | |
for r, nf, df, ex in partial_list[2]: | |
if isinstance(r, Poly): | |
# Assemble in case the roots are given implicitly by a polynomials | |
an, nu = nf.variables, nf.expr | |
ad, de = df.variables, df.expr | |
# Hack to make dummies equal because Lambda created new Dummies | |
de = de.subs(ad[0], an[0]) | |
func = Lambda(tuple(an), nu/de**ex) | |
pfd += RootSum(r, func, auto=False, quadratic=False) | |
else: | |
# Assemble in case the roots are given explicitly by a list of algebraic numbers | |
for root in r: | |
pfd += nf(root)/df(root)**ex | |
return common*pfd | |