Spaces:
Running
Running
from sympy.abc import x | |
from sympy.core.numbers import (I, Rational) | |
from sympy.core.singleton import S | |
from sympy.functions.elementary.miscellaneous import sqrt | |
from sympy.polys import Poly, cyclotomic_poly | |
from sympy.polys.domains import FF, QQ | |
from sympy.polys.matrices import DomainMatrix, DM | |
from sympy.polys.matrices.exceptions import DMRankError | |
from sympy.polys.numberfields.utilities import ( | |
AlgIntPowers, coeff_search, extract_fundamental_discriminant, | |
isolate, supplement_a_subspace, | |
) | |
from sympy.printing.lambdarepr import IntervalPrinter | |
from sympy.testing.pytest import raises | |
def test_AlgIntPowers_01(): | |
T = Poly(cyclotomic_poly(5)) | |
zeta_pow = AlgIntPowers(T) | |
raises(ValueError, lambda: zeta_pow[-1]) | |
for e in range(10): | |
a = e % 5 | |
if a < 4: | |
c = zeta_pow[e] | |
assert c[a] == 1 and all(c[i] == 0 for i in range(4) if i != a) | |
else: | |
assert zeta_pow[e] == [-1] * 4 | |
def test_AlgIntPowers_02(): | |
T = Poly(x**3 + 2*x**2 + 3*x + 4) | |
m = 7 | |
theta_pow = AlgIntPowers(T, m) | |
for e in range(10): | |
computed = theta_pow[e] | |
coeffs = (Poly(x)**e % T + Poly(x**3)).rep.to_list()[1:] | |
expected = [c % m for c in reversed(coeffs)] | |
assert computed == expected | |
def test_coeff_search(): | |
C = [] | |
search = coeff_search(2, 1) | |
for i, c in enumerate(search): | |
C.append(c) | |
if i == 12: | |
break | |
assert C == [[1, 1], [1, 0], [1, -1], [0, 1], [2, 2], [2, 1], [2, 0], [2, -1], [2, -2], [1, 2], [1, -2], [0, 2], [3, 3]] | |
def test_extract_fundamental_discriminant(): | |
# To extract, integer must be 0 or 1 mod 4. | |
raises(ValueError, lambda: extract_fundamental_discriminant(2)) | |
raises(ValueError, lambda: extract_fundamental_discriminant(3)) | |
# Try many cases, of different forms: | |
cases = ( | |
(0, {}, {0: 1}), | |
(1, {}, {}), | |
(8, {2: 3}, {}), | |
(-8, {2: 3, -1: 1}, {}), | |
(12, {2: 2, 3: 1}, {}), | |
(36, {}, {2: 1, 3: 1}), | |
(45, {5: 1}, {3: 1}), | |
(48, {2: 2, 3: 1}, {2: 1}), | |
(1125, {5: 1}, {3: 1, 5: 1}), | |
) | |
for a, D_expected, F_expected in cases: | |
D, F = extract_fundamental_discriminant(a) | |
assert D == D_expected | |
assert F == F_expected | |
def test_supplement_a_subspace_1(): | |
M = DM([[1, 7, 0], [2, 3, 4]], QQ).transpose() | |
# First supplement over QQ: | |
B = supplement_a_subspace(M) | |
assert B[:, :2] == M | |
assert B[:, 2] == DomainMatrix.eye(3, QQ).to_dense()[:, 0] | |
# Now supplement over FF(7): | |
M = M.convert_to(FF(7)) | |
B = supplement_a_subspace(M) | |
assert B[:, :2] == M | |
# When we work mod 7, first col of M goes to [1, 0, 0], | |
# so the supplementary vector cannot equal this, as it did | |
# when we worked over QQ. Instead, we get the second std basis vector: | |
assert B[:, 2] == DomainMatrix.eye(3, FF(7)).to_dense()[:, 1] | |
def test_supplement_a_subspace_2(): | |
M = DM([[1, 0, 0], [2, 0, 0]], QQ).transpose() | |
with raises(DMRankError): | |
supplement_a_subspace(M) | |
def test_IntervalPrinter(): | |
ip = IntervalPrinter() | |
assert ip.doprint(x**Rational(1, 3)) == "x**(mpi('1/3'))" | |
assert ip.doprint(sqrt(x)) == "x**(mpi('1/2'))" | |
def test_isolate(): | |
assert isolate(1) == (1, 1) | |
assert isolate(S.Half) == (S.Half, S.Half) | |
assert isolate(sqrt(2)) == (1, 2) | |
assert isolate(-sqrt(2)) == (-2, -1) | |
assert isolate(sqrt(2), eps=Rational(1, 100)) == (Rational(24, 17), Rational(17, 12)) | |
assert isolate(-sqrt(2), eps=Rational(1, 100)) == (Rational(-17, 12), Rational(-24, 17)) | |
raises(NotImplementedError, lambda: isolate(I)) | |