Spaces:
Running
Running
"""Tools and arithmetics for monomials of distributed polynomials. """ | |
from itertools import combinations_with_replacement, product | |
from textwrap import dedent | |
from sympy.core import Mul, S, Tuple, sympify | |
from sympy.polys.polyerrors import ExactQuotientFailed | |
from sympy.polys.polyutils import PicklableWithSlots, dict_from_expr | |
from sympy.utilities import public | |
from sympy.utilities.iterables import is_sequence, iterable | |
def itermonomials(variables, max_degrees, min_degrees=None): | |
r""" | |
``max_degrees`` and ``min_degrees`` are either both integers or both lists. | |
Unless otherwise specified, ``min_degrees`` is either ``0`` or | |
``[0, ..., 0]``. | |
A generator of all monomials ``monom`` is returned, such that | |
either | |
``min_degree <= total_degree(monom) <= max_degree``, | |
or | |
``min_degrees[i] <= degree_list(monom)[i] <= max_degrees[i]``, | |
for all ``i``. | |
Case I. ``max_degrees`` and ``min_degrees`` are both integers | |
============================================================= | |
Given a set of variables $V$ and a min_degree $N$ and a max_degree $M$ | |
generate a set of monomials of degree less than or equal to $N$ and greater | |
than or equal to $M$. The total number of monomials in commutative | |
variables is huge and is given by the following formula if $M = 0$: | |
.. math:: | |
\frac{(\#V + N)!}{\#V! N!} | |
For example if we would like to generate a dense polynomial of | |
a total degree $N = 50$ and $M = 0$, which is the worst case, in 5 | |
variables, assuming that exponents and all of coefficients are 32-bit long | |
and stored in an array we would need almost 80 GiB of memory! Fortunately | |
most polynomials, that we will encounter, are sparse. | |
Consider monomials in commutative variables $x$ and $y$ | |
and non-commutative variables $a$ and $b$:: | |
>>> from sympy import symbols | |
>>> from sympy.polys.monomials import itermonomials | |
>>> from sympy.polys.orderings import monomial_key | |
>>> from sympy.abc import x, y | |
>>> sorted(itermonomials([x, y], 2), key=monomial_key('grlex', [y, x])) | |
[1, x, y, x**2, x*y, y**2] | |
>>> sorted(itermonomials([x, y], 3), key=monomial_key('grlex', [y, x])) | |
[1, x, y, x**2, x*y, y**2, x**3, x**2*y, x*y**2, y**3] | |
>>> a, b = symbols('a, b', commutative=False) | |
>>> set(itermonomials([a, b, x], 2)) | |
{1, a, a**2, b, b**2, x, x**2, a*b, b*a, x*a, x*b} | |
>>> sorted(itermonomials([x, y], 2, 1), key=monomial_key('grlex', [y, x])) | |
[x, y, x**2, x*y, y**2] | |
Case II. ``max_degrees`` and ``min_degrees`` are both lists | |
=========================================================== | |
If ``max_degrees = [d_1, ..., d_n]`` and | |
``min_degrees = [e_1, ..., e_n]``, the number of monomials generated | |
is: | |
.. math:: | |
(d_1 - e_1 + 1) (d_2 - e_2 + 1) \cdots (d_n - e_n + 1) | |
Let us generate all monomials ``monom`` in variables $x$ and $y$ | |
such that ``[1, 2][i] <= degree_list(monom)[i] <= [2, 4][i]``, | |
``i = 0, 1`` :: | |
>>> from sympy import symbols | |
>>> from sympy.polys.monomials import itermonomials | |
>>> from sympy.polys.orderings import monomial_key | |
>>> from sympy.abc import x, y | |
>>> sorted(itermonomials([x, y], [2, 4], [1, 2]), reverse=True, key=monomial_key('lex', [x, y])) | |
[x**2*y**4, x**2*y**3, x**2*y**2, x*y**4, x*y**3, x*y**2] | |
""" | |
n = len(variables) | |
if is_sequence(max_degrees): | |
if len(max_degrees) != n: | |
raise ValueError('Argument sizes do not match') | |
if min_degrees is None: | |
min_degrees = [0]*n | |
elif not is_sequence(min_degrees): | |
raise ValueError('min_degrees is not a list') | |
else: | |
if len(min_degrees) != n: | |
raise ValueError('Argument sizes do not match') | |
if any(i < 0 for i in min_degrees): | |
raise ValueError("min_degrees cannot contain negative numbers") | |
total_degree = False | |
else: | |
max_degree = max_degrees | |
if max_degree < 0: | |
raise ValueError("max_degrees cannot be negative") | |
if min_degrees is None: | |
min_degree = 0 | |
else: | |
if min_degrees < 0: | |
raise ValueError("min_degrees cannot be negative") | |
min_degree = min_degrees | |
total_degree = True | |
if total_degree: | |
if min_degree > max_degree: | |
return | |
if not variables or max_degree == 0: | |
yield S.One | |
return | |
# Force to list in case of passed tuple or other incompatible collection | |
variables = list(variables) + [S.One] | |
if all(variable.is_commutative for variable in variables): | |
monomials_list_comm = [] | |
for item in combinations_with_replacement(variables, max_degree): | |
powers = dict.fromkeys(variables, 0) | |
for variable in item: | |
if variable != 1: | |
powers[variable] += 1 | |
if sum(powers.values()) >= min_degree: | |
monomials_list_comm.append(Mul(*item)) | |
yield from set(monomials_list_comm) | |
else: | |
monomials_list_non_comm = [] | |
for item in product(variables, repeat=max_degree): | |
powers = dict.fromkeys(variables, 0) | |
for variable in item: | |
if variable != 1: | |
powers[variable] += 1 | |
if sum(powers.values()) >= min_degree: | |
monomials_list_non_comm.append(Mul(*item)) | |
yield from set(monomials_list_non_comm) | |
else: | |
if any(min_degrees[i] > max_degrees[i] for i in range(n)): | |
raise ValueError('min_degrees[i] must be <= max_degrees[i] for all i') | |
power_lists = [] | |
for var, min_d, max_d in zip(variables, min_degrees, max_degrees): | |
power_lists.append([var**i for i in range(min_d, max_d + 1)]) | |
for powers in product(*power_lists): | |
yield Mul(*powers) | |
def monomial_count(V, N): | |
r""" | |
Computes the number of monomials. | |
The number of monomials is given by the following formula: | |
.. math:: | |
\frac{(\#V + N)!}{\#V! N!} | |
where `N` is a total degree and `V` is a set of variables. | |
Examples | |
======== | |
>>> from sympy.polys.monomials import itermonomials, monomial_count | |
>>> from sympy.polys.orderings import monomial_key | |
>>> from sympy.abc import x, y | |
>>> monomial_count(2, 2) | |
6 | |
>>> M = list(itermonomials([x, y], 2)) | |
>>> sorted(M, key=monomial_key('grlex', [y, x])) | |
[1, x, y, x**2, x*y, y**2] | |
>>> len(M) | |
6 | |
""" | |
from sympy.functions.combinatorial.factorials import factorial | |
return factorial(V + N) / factorial(V) / factorial(N) | |
def monomial_mul(A, B): | |
""" | |
Multiplication of tuples representing monomials. | |
Examples | |
======== | |
Lets multiply `x**3*y**4*z` with `x*y**2`:: | |
>>> from sympy.polys.monomials import monomial_mul | |
>>> monomial_mul((3, 4, 1), (1, 2, 0)) | |
(4, 6, 1) | |
which gives `x**4*y**5*z`. | |
""" | |
return tuple([ a + b for a, b in zip(A, B) ]) | |
def monomial_div(A, B): | |
""" | |
Division of tuples representing monomials. | |
Examples | |
======== | |
Lets divide `x**3*y**4*z` by `x*y**2`:: | |
>>> from sympy.polys.monomials import monomial_div | |
>>> monomial_div((3, 4, 1), (1, 2, 0)) | |
(2, 2, 1) | |
which gives `x**2*y**2*z`. However:: | |
>>> monomial_div((3, 4, 1), (1, 2, 2)) is None | |
True | |
`x*y**2*z**2` does not divide `x**3*y**4*z`. | |
""" | |
C = monomial_ldiv(A, B) | |
if all(c >= 0 for c in C): | |
return tuple(C) | |
else: | |
return None | |
def monomial_ldiv(A, B): | |
""" | |
Division of tuples representing monomials. | |
Examples | |
======== | |
Lets divide `x**3*y**4*z` by `x*y**2`:: | |
>>> from sympy.polys.monomials import monomial_ldiv | |
>>> monomial_ldiv((3, 4, 1), (1, 2, 0)) | |
(2, 2, 1) | |
which gives `x**2*y**2*z`. | |
>>> monomial_ldiv((3, 4, 1), (1, 2, 2)) | |
(2, 2, -1) | |
which gives `x**2*y**2*z**-1`. | |
""" | |
return tuple([ a - b for a, b in zip(A, B) ]) | |
def monomial_pow(A, n): | |
"""Return the n-th pow of the monomial. """ | |
return tuple([ a*n for a in A ]) | |
def monomial_gcd(A, B): | |
""" | |
Greatest common divisor of tuples representing monomials. | |
Examples | |
======== | |
Lets compute GCD of `x*y**4*z` and `x**3*y**2`:: | |
>>> from sympy.polys.monomials import monomial_gcd | |
>>> monomial_gcd((1, 4, 1), (3, 2, 0)) | |
(1, 2, 0) | |
which gives `x*y**2`. | |
""" | |
return tuple([ min(a, b) for a, b in zip(A, B) ]) | |
def monomial_lcm(A, B): | |
""" | |
Least common multiple of tuples representing monomials. | |
Examples | |
======== | |
Lets compute LCM of `x*y**4*z` and `x**3*y**2`:: | |
>>> from sympy.polys.monomials import monomial_lcm | |
>>> monomial_lcm((1, 4, 1), (3, 2, 0)) | |
(3, 4, 1) | |
which gives `x**3*y**4*z`. | |
""" | |
return tuple([ max(a, b) for a, b in zip(A, B) ]) | |
def monomial_divides(A, B): | |
""" | |
Does there exist a monomial X such that XA == B? | |
Examples | |
======== | |
>>> from sympy.polys.monomials import monomial_divides | |
>>> monomial_divides((1, 2), (3, 4)) | |
True | |
>>> monomial_divides((1, 2), (0, 2)) | |
False | |
""" | |
return all(a <= b for a, b in zip(A, B)) | |
def monomial_max(*monoms): | |
""" | |
Returns maximal degree for each variable in a set of monomials. | |
Examples | |
======== | |
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. | |
We wish to find out what is the maximal degree for each of `x`, `y` | |
and `z` variables:: | |
>>> from sympy.polys.monomials import monomial_max | |
>>> monomial_max((3,4,5), (0,5,1), (6,3,9)) | |
(6, 5, 9) | |
""" | |
M = list(monoms[0]) | |
for N in monoms[1:]: | |
for i, n in enumerate(N): | |
M[i] = max(M[i], n) | |
return tuple(M) | |
def monomial_min(*monoms): | |
""" | |
Returns minimal degree for each variable in a set of monomials. | |
Examples | |
======== | |
Consider monomials `x**3*y**4*z**5`, `y**5*z` and `x**6*y**3*z**9`. | |
We wish to find out what is the minimal degree for each of `x`, `y` | |
and `z` variables:: | |
>>> from sympy.polys.monomials import monomial_min | |
>>> monomial_min((3,4,5), (0,5,1), (6,3,9)) | |
(0, 3, 1) | |
""" | |
M = list(monoms[0]) | |
for N in monoms[1:]: | |
for i, n in enumerate(N): | |
M[i] = min(M[i], n) | |
return tuple(M) | |
def monomial_deg(M): | |
""" | |
Returns the total degree of a monomial. | |
Examples | |
======== | |
The total degree of `xy^2` is 3: | |
>>> from sympy.polys.monomials import monomial_deg | |
>>> monomial_deg((1, 2)) | |
3 | |
""" | |
return sum(M) | |
def term_div(a, b, domain): | |
"""Division of two terms in over a ring/field. """ | |
a_lm, a_lc = a | |
b_lm, b_lc = b | |
monom = monomial_div(a_lm, b_lm) | |
if domain.is_Field: | |
if monom is not None: | |
return monom, domain.quo(a_lc, b_lc) | |
else: | |
return None | |
else: | |
if not (monom is None or a_lc % b_lc): | |
return monom, domain.quo(a_lc, b_lc) | |
else: | |
return None | |
class MonomialOps: | |
"""Code generator of fast monomial arithmetic functions. """ | |
def __init__(self, ngens): | |
self.ngens = ngens | |
def _build(self, code, name): | |
ns = {} | |
exec(code, ns) | |
return ns[name] | |
def _vars(self, name): | |
return [ "%s%s" % (name, i) for i in range(self.ngens) ] | |
def mul(self): | |
name = "monomial_mul" | |
template = dedent("""\ | |
def %(name)s(A, B): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
return (%(AB)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
AB = [ "%s + %s" % (a, b) for a, b in zip(A, B) ] | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "AB": ", ".join(AB)} | |
return self._build(code, name) | |
def pow(self): | |
name = "monomial_pow" | |
template = dedent("""\ | |
def %(name)s(A, k): | |
(%(A)s,) = A | |
return (%(Ak)s,) | |
""") | |
A = self._vars("a") | |
Ak = [ "%s*k" % a for a in A ] | |
code = template % {"name": name, "A": ", ".join(A), "Ak": ", ".join(Ak)} | |
return self._build(code, name) | |
def mulpow(self): | |
name = "monomial_mulpow" | |
template = dedent("""\ | |
def %(name)s(A, B, k): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
return (%(ABk)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
ABk = [ "%s + %s*k" % (a, b) for a, b in zip(A, B) ] | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "ABk": ", ".join(ABk)} | |
return self._build(code, name) | |
def ldiv(self): | |
name = "monomial_ldiv" | |
template = dedent("""\ | |
def %(name)s(A, B): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
return (%(AB)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
AB = [ "%s - %s" % (a, b) for a, b in zip(A, B) ] | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "AB": ", ".join(AB)} | |
return self._build(code, name) | |
def div(self): | |
name = "monomial_div" | |
template = dedent("""\ | |
def %(name)s(A, B): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
%(RAB)s | |
return (%(R)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
RAB = [ "r%(i)s = a%(i)s - b%(i)s\n if r%(i)s < 0: return None" % {"i": i} for i in range(self.ngens) ] | |
R = self._vars("r") | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "RAB": "\n ".join(RAB), "R": ", ".join(R)} | |
return self._build(code, name) | |
def lcm(self): | |
name = "monomial_lcm" | |
template = dedent("""\ | |
def %(name)s(A, B): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
return (%(AB)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
AB = [ "%s if %s >= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "AB": ", ".join(AB)} | |
return self._build(code, name) | |
def gcd(self): | |
name = "monomial_gcd" | |
template = dedent("""\ | |
def %(name)s(A, B): | |
(%(A)s,) = A | |
(%(B)s,) = B | |
return (%(AB)s,) | |
""") | |
A = self._vars("a") | |
B = self._vars("b") | |
AB = [ "%s if %s <= %s else %s" % (a, a, b, b) for a, b in zip(A, B) ] | |
code = template % {"name": name, "A": ", ".join(A), "B": ", ".join(B), "AB": ", ".join(AB)} | |
return self._build(code, name) | |
class Monomial(PicklableWithSlots): | |
"""Class representing a monomial, i.e. a product of powers. """ | |
__slots__ = ('exponents', 'gens') | |
def __init__(self, monom, gens=None): | |
if not iterable(monom): | |
rep, gens = dict_from_expr(sympify(monom), gens=gens) | |
if len(rep) == 1 and list(rep.values())[0] == 1: | |
monom = list(rep.keys())[0] | |
else: | |
raise ValueError("Expected a monomial got {}".format(monom)) | |
self.exponents = tuple(map(int, monom)) | |
self.gens = gens | |
def rebuild(self, exponents, gens=None): | |
return self.__class__(exponents, gens or self.gens) | |
def __len__(self): | |
return len(self.exponents) | |
def __iter__(self): | |
return iter(self.exponents) | |
def __getitem__(self, item): | |
return self.exponents[item] | |
def __hash__(self): | |
return hash((self.__class__.__name__, self.exponents, self.gens)) | |
def __str__(self): | |
if self.gens: | |
return "*".join([ "%s**%s" % (gen, exp) for gen, exp in zip(self.gens, self.exponents) ]) | |
else: | |
return "%s(%s)" % (self.__class__.__name__, self.exponents) | |
def as_expr(self, *gens): | |
"""Convert a monomial instance to a SymPy expression. """ | |
gens = gens or self.gens | |
if not gens: | |
raise ValueError( | |
"Cannot convert %s to an expression without generators" % self) | |
return Mul(*[ gen**exp for gen, exp in zip(gens, self.exponents) ]) | |
def __eq__(self, other): | |
if isinstance(other, Monomial): | |
exponents = other.exponents | |
elif isinstance(other, (tuple, Tuple)): | |
exponents = other | |
else: | |
return False | |
return self.exponents == exponents | |
def __ne__(self, other): | |
return not self == other | |
def __mul__(self, other): | |
if isinstance(other, Monomial): | |
exponents = other.exponents | |
elif isinstance(other, (tuple, Tuple)): | |
exponents = other | |
else: | |
raise NotImplementedError | |
return self.rebuild(monomial_mul(self.exponents, exponents)) | |
def __truediv__(self, other): | |
if isinstance(other, Monomial): | |
exponents = other.exponents | |
elif isinstance(other, (tuple, Tuple)): | |
exponents = other | |
else: | |
raise NotImplementedError | |
result = monomial_div(self.exponents, exponents) | |
if result is not None: | |
return self.rebuild(result) | |
else: | |
raise ExactQuotientFailed(self, Monomial(other)) | |
__floordiv__ = __truediv__ | |
def __pow__(self, other): | |
n = int(other) | |
if n < 0: | |
raise ValueError("a non-negative integer expected, got %s" % other) | |
return self.rebuild(monomial_pow(self.exponents, n)) | |
def gcd(self, other): | |
"""Greatest common divisor of monomials. """ | |
if isinstance(other, Monomial): | |
exponents = other.exponents | |
elif isinstance(other, (tuple, Tuple)): | |
exponents = other | |
else: | |
raise TypeError( | |
"an instance of Monomial class expected, got %s" % other) | |
return self.rebuild(monomial_gcd(self.exponents, exponents)) | |
def lcm(self, other): | |
"""Least common multiple of monomials. """ | |
if isinstance(other, Monomial): | |
exponents = other.exponents | |
elif isinstance(other, (tuple, Tuple)): | |
exponents = other | |
else: | |
raise TypeError( | |
"an instance of Monomial class expected, got %s" % other) | |
return self.rebuild(monomial_lcm(self.exponents, exponents)) | |