Spaces:
Running
Running
from sympy.core.symbol import Dummy | |
from sympy.ntheory import nextprime | |
from sympy.ntheory.modular import crt | |
from sympy.polys.domains import PolynomialRing | |
from sympy.polys.galoistools import ( | |
gf_gcd, gf_from_dict, gf_gcdex, gf_div, gf_lcm) | |
from sympy.polys.polyerrors import ModularGCDFailed | |
from mpmath import sqrt | |
import random | |
def _trivial_gcd(f, g): | |
""" | |
Compute the GCD of two polynomials in trivial cases, i.e. when one | |
or both polynomials are zero. | |
""" | |
ring = f.ring | |
if not (f or g): | |
return ring.zero, ring.zero, ring.zero | |
elif not f: | |
if g.LC < ring.domain.zero: | |
return -g, ring.zero, -ring.one | |
else: | |
return g, ring.zero, ring.one | |
elif not g: | |
if f.LC < ring.domain.zero: | |
return -f, -ring.one, ring.zero | |
else: | |
return f, ring.one, ring.zero | |
return None | |
def _gf_gcd(fp, gp, p): | |
r""" | |
Compute the GCD of two univariate polynomials in `\mathbb{Z}_p[x]`. | |
""" | |
dom = fp.ring.domain | |
while gp: | |
rem = fp | |
deg = gp.degree() | |
lcinv = dom.invert(gp.LC, p) | |
while True: | |
degrem = rem.degree() | |
if degrem < deg: | |
break | |
rem = (rem - gp.mul_monom((degrem - deg,)).mul_ground(lcinv * rem.LC)).trunc_ground(p) | |
fp = gp | |
gp = rem | |
return fp.mul_ground(dom.invert(fp.LC, p)).trunc_ground(p) | |
def _degree_bound_univariate(f, g): | |
r""" | |
Compute an upper bound for the degree of the GCD of two univariate | |
integer polynomials `f` and `g`. | |
The function chooses a suitable prime `p` and computes the GCD of | |
`f` and `g` in `\mathbb{Z}_p[x]`. The choice of `p` guarantees that | |
the degree in `\mathbb{Z}_p[x]` is greater than or equal to the degree | |
in `\mathbb{Z}[x]`. | |
Parameters | |
========== | |
f : PolyElement | |
univariate integer polynomial | |
g : PolyElement | |
univariate integer polynomial | |
""" | |
gamma = f.ring.domain.gcd(f.LC, g.LC) | |
p = 1 | |
p = nextprime(p) | |
while gamma % p == 0: | |
p = nextprime(p) | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
hp = _gf_gcd(fp, gp, p) | |
deghp = hp.degree() | |
return deghp | |
def _chinese_remainder_reconstruction_univariate(hp, hq, p, q): | |
r""" | |
Construct a polynomial `h_{pq}` in `\mathbb{Z}_{p q}[x]` such that | |
.. math :: | |
h_{pq} = h_p \; \mathrm{mod} \, p | |
h_{pq} = h_q \; \mathrm{mod} \, q | |
for relatively prime integers `p` and `q` and polynomials | |
`h_p` and `h_q` in `\mathbb{Z}_p[x]` and `\mathbb{Z}_q[x]` | |
respectively. | |
The coefficients of the polynomial `h_{pq}` are computed with the | |
Chinese Remainder Theorem. The symmetric representation in | |
`\mathbb{Z}_p[x]`, `\mathbb{Z}_q[x]` and `\mathbb{Z}_{p q}[x]` is used. | |
It is assumed that `h_p` and `h_q` have the same degree. | |
Parameters | |
========== | |
hp : PolyElement | |
univariate integer polynomial with coefficients in `\mathbb{Z}_p` | |
hq : PolyElement | |
univariate integer polynomial with coefficients in `\mathbb{Z}_q` | |
p : Integer | |
modulus of `h_p`, relatively prime to `q` | |
q : Integer | |
modulus of `h_q`, relatively prime to `p` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_univariate | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> p = 3 | |
>>> q = 5 | |
>>> hp = -x**3 - 1 | |
>>> hq = 2*x**3 - 2*x**2 + x | |
>>> hpq = _chinese_remainder_reconstruction_univariate(hp, hq, p, q) | |
>>> hpq | |
2*x**3 + 3*x**2 + 6*x + 5 | |
>>> hpq.trunc_ground(p) == hp | |
True | |
>>> hpq.trunc_ground(q) == hq | |
True | |
""" | |
n = hp.degree() | |
x = hp.ring.gens[0] | |
hpq = hp.ring.zero | |
for i in range(n+1): | |
hpq[(i,)] = crt([p, q], [hp.coeff(x**i), hq.coeff(x**i)], symmetric=True)[0] | |
hpq.strip_zero() | |
return hpq | |
def modgcd_univariate(f, g): | |
r""" | |
Computes the GCD of two polynomials in `\mathbb{Z}[x]` using a modular | |
algorithm. | |
The algorithm computes the GCD of two univariate integer polynomials | |
`f` and `g` by computing the GCD in `\mathbb{Z}_p[x]` for suitable | |
primes `p` and then reconstructing the coefficients with the Chinese | |
Remainder Theorem. Trial division is only made for candidates which | |
are very likely the desired GCD. | |
Parameters | |
========== | |
f : PolyElement | |
univariate integer polynomial | |
g : PolyElement | |
univariate integer polynomial | |
Returns | |
======= | |
h : PolyElement | |
GCD of the polynomials `f` and `g` | |
cff : PolyElement | |
cofactor of `f`, i.e. `\frac{f}{h}` | |
cfg : PolyElement | |
cofactor of `g`, i.e. `\frac{g}{h}` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import modgcd_univariate | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> f = x**5 - 1 | |
>>> g = x - 1 | |
>>> h, cff, cfg = modgcd_univariate(f, g) | |
>>> h, cff, cfg | |
(x - 1, x**4 + x**3 + x**2 + x + 1, 1) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
>>> f = 6*x**2 - 6 | |
>>> g = 2*x**2 + 4*x + 2 | |
>>> h, cff, cfg = modgcd_univariate(f, g) | |
>>> h, cff, cfg | |
(2*x + 2, 3*x - 3, x + 1) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
References | |
========== | |
1. [Monagan00]_ | |
""" | |
assert f.ring == g.ring and f.ring.domain.is_ZZ | |
result = _trivial_gcd(f, g) | |
if result is not None: | |
return result | |
ring = f.ring | |
cf, f = f.primitive() | |
cg, g = g.primitive() | |
ch = ring.domain.gcd(cf, cg) | |
bound = _degree_bound_univariate(f, g) | |
if bound == 0: | |
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) | |
gamma = ring.domain.gcd(f.LC, g.LC) | |
m = 1 | |
p = 1 | |
while True: | |
p = nextprime(p) | |
while gamma % p == 0: | |
p = nextprime(p) | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
hp = _gf_gcd(fp, gp, p) | |
deghp = hp.degree() | |
if deghp > bound: | |
continue | |
elif deghp < bound: | |
m = 1 | |
bound = deghp | |
continue | |
hp = hp.mul_ground(gamma).trunc_ground(p) | |
if m == 1: | |
m = p | |
hlastm = hp | |
continue | |
hm = _chinese_remainder_reconstruction_univariate(hp, hlastm, p, m) | |
m *= p | |
if not hm == hlastm: | |
hlastm = hm | |
continue | |
h = hm.quo_ground(hm.content()) | |
fquo, frem = f.div(h) | |
gquo, grem = g.div(h) | |
if not frem and not grem: | |
if h.LC < 0: | |
ch = -ch | |
h = h.mul_ground(ch) | |
cff = fquo.mul_ground(cf // ch) | |
cfg = gquo.mul_ground(cg // ch) | |
return h, cff, cfg | |
def _primitive(f, p): | |
r""" | |
Compute the content and the primitive part of a polynomial in | |
`\mathbb{Z}_p[x_0, \ldots, x_{k-2}, y] \cong \mathbb{Z}_p[y][x_0, \ldots, x_{k-2}]`. | |
Parameters | |
========== | |
f : PolyElement | |
integer polynomial in `\mathbb{Z}_p[x0, \ldots, x{k-2}, y]` | |
p : Integer | |
modulus of `f` | |
Returns | |
======= | |
contf : PolyElement | |
integer polynomial in `\mathbb{Z}_p[y]`, content of `f` | |
ppf : PolyElement | |
primitive part of `f`, i.e. `\frac{f}{contf}` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _primitive | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> p = 3 | |
>>> f = x**2*y**2 + x**2*y - y**2 - y | |
>>> _primitive(f, p) | |
(y**2 + y, x**2 - 1) | |
>>> R, x, y, z = ring("x, y, z", ZZ) | |
>>> f = x*y*z - y**2*z**2 | |
>>> _primitive(f, p) | |
(z, x*y - y**2*z) | |
""" | |
ring = f.ring | |
dom = ring.domain | |
k = ring.ngens | |
coeffs = {} | |
for monom, coeff in f.iterterms(): | |
if monom[:-1] not in coeffs: | |
coeffs[monom[:-1]] = {} | |
coeffs[monom[:-1]][monom[-1]] = coeff | |
cont = [] | |
for coeff in iter(coeffs.values()): | |
cont = gf_gcd(cont, gf_from_dict(coeff, p, dom), p, dom) | |
yring = ring.clone(symbols=ring.symbols[k-1]) | |
contf = yring.from_dense(cont).trunc_ground(p) | |
return contf, f.quo(contf.set_ring(ring)) | |
def _deg(f): | |
r""" | |
Compute the degree of a multivariate polynomial | |
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`. | |
Parameters | |
========== | |
f : PolyElement | |
polynomial in `K[x_0, \ldots, x_{k-2}, y]` | |
Returns | |
======= | |
degf : Integer tuple | |
degree of `f` in `x_0, \ldots, x_{k-2}` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _deg | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> f = x**2*y**2 + x**2*y - 1 | |
>>> _deg(f) | |
(2,) | |
>>> R, x, y, z = ring("x, y, z", ZZ) | |
>>> f = x**2*y**2 + x**2*y - 1 | |
>>> _deg(f) | |
(2, 2) | |
>>> f = x*y*z - y**2*z**2 | |
>>> _deg(f) | |
(1, 1) | |
""" | |
k = f.ring.ngens | |
degf = (0,) * (k-1) | |
for monom in f.itermonoms(): | |
if monom[:-1] > degf: | |
degf = monom[:-1] | |
return degf | |
def _LC(f): | |
r""" | |
Compute the leading coefficient of a multivariate polynomial | |
`f \in K[x_0, \ldots, x_{k-2}, y] \cong K[y][x_0, \ldots, x_{k-2}]`. | |
Parameters | |
========== | |
f : PolyElement | |
polynomial in `K[x_0, \ldots, x_{k-2}, y]` | |
Returns | |
======= | |
lcf : PolyElement | |
polynomial in `K[y]`, leading coefficient of `f` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _LC | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> f = x**2*y**2 + x**2*y - 1 | |
>>> _LC(f) | |
y**2 + y | |
>>> R, x, y, z = ring("x, y, z", ZZ) | |
>>> f = x**2*y**2 + x**2*y - 1 | |
>>> _LC(f) | |
1 | |
>>> f = x*y*z - y**2*z**2 | |
>>> _LC(f) | |
z | |
""" | |
ring = f.ring | |
k = ring.ngens | |
yring = ring.clone(symbols=ring.symbols[k-1]) | |
y = yring.gens[0] | |
degf = _deg(f) | |
lcf = yring.zero | |
for monom, coeff in f.iterterms(): | |
if monom[:-1] == degf: | |
lcf += coeff*y**monom[-1] | |
return lcf | |
def _swap(f, i): | |
""" | |
Make the variable `x_i` the leading one in a multivariate polynomial `f`. | |
""" | |
ring = f.ring | |
fswap = ring.zero | |
for monom, coeff in f.iterterms(): | |
monomswap = (monom[i],) + monom[:i] + monom[i+1:] | |
fswap[monomswap] = coeff | |
return fswap | |
def _degree_bound_bivariate(f, g): | |
r""" | |
Compute upper degree bounds for the GCD of two bivariate | |
integer polynomials `f` and `g`. | |
The GCD is viewed as a polynomial in `\mathbb{Z}[y][x]` and the | |
function returns an upper bound for its degree and one for the degree | |
of its content. This is done by choosing a suitable prime `p` and | |
computing the GCD of the contents of `f \; \mathrm{mod} \, p` and | |
`g \; \mathrm{mod} \, p`. The choice of `p` guarantees that the degree | |
of the content in `\mathbb{Z}_p[y]` is greater than or equal to the | |
degree in `\mathbb{Z}[y]`. To obtain the degree bound in the variable | |
`x`, the polynomials are evaluated at `y = a` for a suitable | |
`a \in \mathbb{Z}_p` and then their GCD in `\mathbb{Z}_p[x]` is | |
computed. If no such `a` exists, i.e. the degree in `\mathbb{Z}_p[x]` | |
is always smaller than the one in `\mathbb{Z}[y][x]`, then the bound is | |
set to the minimum of the degrees of `f` and `g` in `x`. | |
Parameters | |
========== | |
f : PolyElement | |
bivariate integer polynomial | |
g : PolyElement | |
bivariate integer polynomial | |
Returns | |
======= | |
xbound : Integer | |
upper bound for the degree of the GCD of the polynomials `f` and | |
`g` in the variable `x` | |
ycontbound : Integer | |
upper bound for the degree of the content of the GCD of the | |
polynomials `f` and `g` in the variable `y` | |
References | |
========== | |
1. [Monagan00]_ | |
""" | |
ring = f.ring | |
gamma1 = ring.domain.gcd(f.LC, g.LC) | |
gamma2 = ring.domain.gcd(_swap(f, 1).LC, _swap(g, 1).LC) | |
badprimes = gamma1 * gamma2 | |
p = 1 | |
p = nextprime(p) | |
while badprimes % p == 0: | |
p = nextprime(p) | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
contfp, fp = _primitive(fp, p) | |
contgp, gp = _primitive(gp, p) | |
conthp = _gf_gcd(contfp, contgp, p) # polynomial in Z_p[y] | |
ycontbound = conthp.degree() | |
# polynomial in Z_p[y] | |
delta = _gf_gcd(_LC(fp), _LC(gp), p) | |
for a in range(p): | |
if not delta.evaluate(0, a) % p: | |
continue | |
fpa = fp.evaluate(1, a).trunc_ground(p) | |
gpa = gp.evaluate(1, a).trunc_ground(p) | |
hpa = _gf_gcd(fpa, gpa, p) | |
xbound = hpa.degree() | |
return xbound, ycontbound | |
return min(fp.degree(), gp.degree()), ycontbound | |
def _chinese_remainder_reconstruction_multivariate(hp, hq, p, q): | |
r""" | |
Construct a polynomial `h_{pq}` in | |
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` such that | |
.. math :: | |
h_{pq} = h_p \; \mathrm{mod} \, p | |
h_{pq} = h_q \; \mathrm{mod} \, q | |
for relatively prime integers `p` and `q` and polynomials | |
`h_p` and `h_q` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` and | |
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` respectively. | |
The coefficients of the polynomial `h_{pq}` are computed with the | |
Chinese Remainder Theorem. The symmetric representation in | |
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`, | |
`\mathbb{Z}_q[x_0, \ldots, x_{k-1}]` and | |
`\mathbb{Z}_{p q}[x_0, \ldots, x_{k-1}]` is used. | |
Parameters | |
========== | |
hp : PolyElement | |
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` | |
hq : PolyElement | |
multivariate integer polynomial with coefficients in `\mathbb{Z}_q` | |
p : Integer | |
modulus of `h_p`, relatively prime to `q` | |
q : Integer | |
modulus of `h_q`, relatively prime to `p` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _chinese_remainder_reconstruction_multivariate | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> p = 3 | |
>>> q = 5 | |
>>> hp = x**3*y - x**2 - 1 | |
>>> hq = -x**3*y - 2*x*y**2 + 2 | |
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) | |
>>> hpq | |
4*x**3*y + 5*x**2 + 3*x*y**2 + 2 | |
>>> hpq.trunc_ground(p) == hp | |
True | |
>>> hpq.trunc_ground(q) == hq | |
True | |
>>> R, x, y, z = ring("x, y, z", ZZ) | |
>>> p = 6 | |
>>> q = 5 | |
>>> hp = 3*x**4 - y**3*z + z | |
>>> hq = -2*x**4 + z | |
>>> hpq = _chinese_remainder_reconstruction_multivariate(hp, hq, p, q) | |
>>> hpq | |
3*x**4 + 5*y**3*z + z | |
>>> hpq.trunc_ground(p) == hp | |
True | |
>>> hpq.trunc_ground(q) == hq | |
True | |
""" | |
hpmonoms = set(hp.monoms()) | |
hqmonoms = set(hq.monoms()) | |
monoms = hpmonoms.intersection(hqmonoms) | |
hpmonoms.difference_update(monoms) | |
hqmonoms.difference_update(monoms) | |
zero = hp.ring.domain.zero | |
hpq = hp.ring.zero | |
if isinstance(hp.ring.domain, PolynomialRing): | |
crt_ = _chinese_remainder_reconstruction_multivariate | |
else: | |
def crt_(cp, cq, p, q): | |
return crt([p, q], [cp, cq], symmetric=True)[0] | |
for monom in monoms: | |
hpq[monom] = crt_(hp[monom], hq[monom], p, q) | |
for monom in hpmonoms: | |
hpq[monom] = crt_(hp[monom], zero, p, q) | |
for monom in hqmonoms: | |
hpq[monom] = crt_(zero, hq[monom], p, q) | |
return hpq | |
def _interpolate_multivariate(evalpoints, hpeval, ring, i, p, ground=False): | |
r""" | |
Reconstruct a polynomial `h_p` in `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` | |
from a list of evaluation points in `\mathbb{Z}_p` and a list of | |
polynomials in | |
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, which | |
are the images of `h_p` evaluated in the variable `x_i`. | |
It is also possible to reconstruct a parameter of the ground domain, | |
i.e. if `h_p` is a polynomial over `\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`. | |
In this case, one has to set ``ground=True``. | |
Parameters | |
========== | |
evalpoints : list of Integer objects | |
list of evaluation points in `\mathbb{Z}_p` | |
hpeval : list of PolyElement objects | |
list of polynomials in (resp. over) | |
`\mathbb{Z}_p[x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{k-1}]`, | |
images of `h_p` evaluated in the variable `x_i` | |
ring : PolyRing | |
`h_p` will be an element of this ring | |
i : Integer | |
index of the variable which has to be reconstructed | |
p : Integer | |
prime number, modulus of `h_p` | |
ground : Boolean | |
indicates whether `x_i` is in the ground domain, default is | |
``False`` | |
Returns | |
======= | |
hp : PolyElement | |
interpolated polynomial in (resp. over) | |
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` | |
""" | |
hp = ring.zero | |
if ground: | |
domain = ring.domain.domain | |
y = ring.domain.gens[i] | |
else: | |
domain = ring.domain | |
y = ring.gens[i] | |
for a, hpa in zip(evalpoints, hpeval): | |
numer = ring.one | |
denom = domain.one | |
for b in evalpoints: | |
if b == a: | |
continue | |
numer *= y - b | |
denom *= a - b | |
denom = domain.invert(denom, p) | |
coeff = numer.mul_ground(denom) | |
hp += hpa.set_ring(ring) * coeff | |
return hp.trunc_ground(p) | |
def modgcd_bivariate(f, g): | |
r""" | |
Computes the GCD of two polynomials in `\mathbb{Z}[x, y]` using a | |
modular algorithm. | |
The algorithm computes the GCD of two bivariate integer polynomials | |
`f` and `g` by calculating the GCD in `\mathbb{Z}_p[x, y]` for | |
suitable primes `p` and then reconstructing the coefficients with the | |
Chinese Remainder Theorem. To compute the bivariate GCD over | |
`\mathbb{Z}_p`, the polynomials `f \; \mathrm{mod} \, p` and | |
`g \; \mathrm{mod} \, p` are evaluated at `y = a` for certain | |
`a \in \mathbb{Z}_p` and then their univariate GCD in `\mathbb{Z}_p[x]` | |
is computed. Interpolating those yields the bivariate GCD in | |
`\mathbb{Z}_p[x, y]`. To verify the result in `\mathbb{Z}[x, y]`, trial | |
division is done, but only for candidates which are very likely the | |
desired GCD. | |
Parameters | |
========== | |
f : PolyElement | |
bivariate integer polynomial | |
g : PolyElement | |
bivariate integer polynomial | |
Returns | |
======= | |
h : PolyElement | |
GCD of the polynomials `f` and `g` | |
cff : PolyElement | |
cofactor of `f`, i.e. `\frac{f}{h}` | |
cfg : PolyElement | |
cofactor of `g`, i.e. `\frac{g}{h}` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import modgcd_bivariate | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> f = x**2 - y**2 | |
>>> g = x**2 + 2*x*y + y**2 | |
>>> h, cff, cfg = modgcd_bivariate(f, g) | |
>>> h, cff, cfg | |
(x + y, x - y, x + y) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
>>> f = x**2*y - x**2 - 4*y + 4 | |
>>> g = x + 2 | |
>>> h, cff, cfg = modgcd_bivariate(f, g) | |
>>> h, cff, cfg | |
(x + 2, x*y - x - 2*y + 2, 1) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
References | |
========== | |
1. [Monagan00]_ | |
""" | |
assert f.ring == g.ring and f.ring.domain.is_ZZ | |
result = _trivial_gcd(f, g) | |
if result is not None: | |
return result | |
ring = f.ring | |
cf, f = f.primitive() | |
cg, g = g.primitive() | |
ch = ring.domain.gcd(cf, cg) | |
xbound, ycontbound = _degree_bound_bivariate(f, g) | |
if xbound == ycontbound == 0: | |
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) | |
fswap = _swap(f, 1) | |
gswap = _swap(g, 1) | |
degyf = fswap.degree() | |
degyg = gswap.degree() | |
ybound, xcontbound = _degree_bound_bivariate(fswap, gswap) | |
if ybound == xcontbound == 0: | |
return ring(ch), f.mul_ground(cf // ch), g.mul_ground(cg // ch) | |
# TODO: to improve performance, choose the main variable here | |
gamma1 = ring.domain.gcd(f.LC, g.LC) | |
gamma2 = ring.domain.gcd(fswap.LC, gswap.LC) | |
badprimes = gamma1 * gamma2 | |
m = 1 | |
p = 1 | |
while True: | |
p = nextprime(p) | |
while badprimes % p == 0: | |
p = nextprime(p) | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
contfp, fp = _primitive(fp, p) | |
contgp, gp = _primitive(gp, p) | |
conthp = _gf_gcd(contfp, contgp, p) # monic polynomial in Z_p[y] | |
degconthp = conthp.degree() | |
if degconthp > ycontbound: | |
continue | |
elif degconthp < ycontbound: | |
m = 1 | |
ycontbound = degconthp | |
continue | |
# polynomial in Z_p[y] | |
delta = _gf_gcd(_LC(fp), _LC(gp), p) | |
degcontfp = contfp.degree() | |
degcontgp = contgp.degree() | |
degdelta = delta.degree() | |
N = min(degyf - degcontfp, degyg - degcontgp, | |
ybound - ycontbound + degdelta) + 1 | |
if p < N: | |
continue | |
n = 0 | |
evalpoints = [] | |
hpeval = [] | |
unlucky = False | |
for a in range(p): | |
deltaa = delta.evaluate(0, a) | |
if not deltaa % p: | |
continue | |
fpa = fp.evaluate(1, a).trunc_ground(p) | |
gpa = gp.evaluate(1, a).trunc_ground(p) | |
hpa = _gf_gcd(fpa, gpa, p) # monic polynomial in Z_p[x] | |
deghpa = hpa.degree() | |
if deghpa > xbound: | |
continue | |
elif deghpa < xbound: | |
m = 1 | |
xbound = deghpa | |
unlucky = True | |
break | |
hpa = hpa.mul_ground(deltaa).trunc_ground(p) | |
evalpoints.append(a) | |
hpeval.append(hpa) | |
n += 1 | |
if n == N: | |
break | |
if unlucky: | |
continue | |
if n < N: | |
continue | |
hp = _interpolate_multivariate(evalpoints, hpeval, ring, 1, p) | |
hp = _primitive(hp, p)[1] | |
hp = hp * conthp.set_ring(ring) | |
degyhp = hp.degree(1) | |
if degyhp > ybound: | |
continue | |
if degyhp < ybound: | |
m = 1 | |
ybound = degyhp | |
continue | |
hp = hp.mul_ground(gamma1).trunc_ground(p) | |
if m == 1: | |
m = p | |
hlastm = hp | |
continue | |
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) | |
m *= p | |
if not hm == hlastm: | |
hlastm = hm | |
continue | |
h = hm.quo_ground(hm.content()) | |
fquo, frem = f.div(h) | |
gquo, grem = g.div(h) | |
if not frem and not grem: | |
if h.LC < 0: | |
ch = -ch | |
h = h.mul_ground(ch) | |
cff = fquo.mul_ground(cf // ch) | |
cfg = gquo.mul_ground(cg // ch) | |
return h, cff, cfg | |
def _modgcd_multivariate_p(f, g, p, degbound, contbound): | |
r""" | |
Compute the GCD of two polynomials in | |
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]`. | |
The algorithm reduces the problem step by step by evaluating the | |
polynomials `f` and `g` at `x_{k-1} = a` for suitable | |
`a \in \mathbb{Z}_p` and then calls itself recursively to compute the GCD | |
in `\mathbb{Z}_p[x_0, \ldots, x_{k-2}]`. If these recursive calls are | |
successful for enough evaluation points, the GCD in `k` variables is | |
interpolated, otherwise the algorithm returns ``None``. Every time a GCD | |
or a content is computed, their degrees are compared with the bounds. If | |
a degree greater then the bound is encountered, then the current call | |
returns ``None`` and a new evaluation point has to be chosen. If at some | |
point the degree is smaller, the correspondent bound is updated and the | |
algorithm fails. | |
Parameters | |
========== | |
f : PolyElement | |
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` | |
g : PolyElement | |
multivariate integer polynomial with coefficients in `\mathbb{Z}_p` | |
p : Integer | |
prime number, modulus of `f` and `g` | |
degbound : list of Integer objects | |
``degbound[i]`` is an upper bound for the degree of the GCD of `f` | |
and `g` in the variable `x_i` | |
contbound : list of Integer objects | |
``contbound[i]`` is an upper bound for the degree of the content of | |
the GCD in `\mathbb{Z}_p[x_i][x_0, \ldots, x_{i-1}]`, | |
``contbound[0]`` is not used can therefore be chosen | |
arbitrarily. | |
Returns | |
======= | |
h : PolyElement | |
GCD of the polynomials `f` and `g` or ``None`` | |
References | |
========== | |
1. [Monagan00]_ | |
2. [Brown71]_ | |
""" | |
ring = f.ring | |
k = ring.ngens | |
if k == 1: | |
h = _gf_gcd(f, g, p).trunc_ground(p) | |
degh = h.degree() | |
if degh > degbound[0]: | |
return None | |
if degh < degbound[0]: | |
degbound[0] = degh | |
raise ModularGCDFailed | |
return h | |
degyf = f.degree(k-1) | |
degyg = g.degree(k-1) | |
contf, f = _primitive(f, p) | |
contg, g = _primitive(g, p) | |
conth = _gf_gcd(contf, contg, p) # polynomial in Z_p[y] | |
degcontf = contf.degree() | |
degcontg = contg.degree() | |
degconth = conth.degree() | |
if degconth > contbound[k-1]: | |
return None | |
if degconth < contbound[k-1]: | |
contbound[k-1] = degconth | |
raise ModularGCDFailed | |
lcf = _LC(f) | |
lcg = _LC(g) | |
delta = _gf_gcd(lcf, lcg, p) # polynomial in Z_p[y] | |
evaltest = delta | |
for i in range(k-1): | |
evaltest *= _gf_gcd(_LC(_swap(f, i)), _LC(_swap(g, i)), p) | |
degdelta = delta.degree() | |
N = min(degyf - degcontf, degyg - degcontg, | |
degbound[k-1] - contbound[k-1] + degdelta) + 1 | |
if p < N: | |
return None | |
n = 0 | |
d = 0 | |
evalpoints = [] | |
heval = [] | |
points = list(range(p)) | |
while points: | |
a = random.sample(points, 1)[0] | |
points.remove(a) | |
if not evaltest.evaluate(0, a) % p: | |
continue | |
deltaa = delta.evaluate(0, a) % p | |
fa = f.evaluate(k-1, a).trunc_ground(p) | |
ga = g.evaluate(k-1, a).trunc_ground(p) | |
# polynomials in Z_p[x_0, ..., x_{k-2}] | |
ha = _modgcd_multivariate_p(fa, ga, p, degbound, contbound) | |
if ha is None: | |
d += 1 | |
if d > n: | |
return None | |
continue | |
if ha.is_ground: | |
h = conth.set_ring(ring).trunc_ground(p) | |
return h | |
ha = ha.mul_ground(deltaa).trunc_ground(p) | |
evalpoints.append(a) | |
heval.append(ha) | |
n += 1 | |
if n == N: | |
h = _interpolate_multivariate(evalpoints, heval, ring, k-1, p) | |
h = _primitive(h, p)[1] * conth.set_ring(ring) | |
degyh = h.degree(k-1) | |
if degyh > degbound[k-1]: | |
return None | |
if degyh < degbound[k-1]: | |
degbound[k-1] = degyh | |
raise ModularGCDFailed | |
return h | |
return None | |
def modgcd_multivariate(f, g): | |
r""" | |
Compute the GCD of two polynomials in `\mathbb{Z}[x_0, \ldots, x_{k-1}]` | |
using a modular algorithm. | |
The algorithm computes the GCD of two multivariate integer polynomials | |
`f` and `g` by calculating the GCD in | |
`\mathbb{Z}_p[x_0, \ldots, x_{k-1}]` for suitable primes `p` and then | |
reconstructing the coefficients with the Chinese Remainder Theorem. To | |
compute the multivariate GCD over `\mathbb{Z}_p` the recursive | |
subroutine :func:`_modgcd_multivariate_p` is used. To verify the result in | |
`\mathbb{Z}[x_0, \ldots, x_{k-1}]`, trial division is done, but only for | |
candidates which are very likely the desired GCD. | |
Parameters | |
========== | |
f : PolyElement | |
multivariate integer polynomial | |
g : PolyElement | |
multivariate integer polynomial | |
Returns | |
======= | |
h : PolyElement | |
GCD of the polynomials `f` and `g` | |
cff : PolyElement | |
cofactor of `f`, i.e. `\frac{f}{h}` | |
cfg : PolyElement | |
cofactor of `g`, i.e. `\frac{g}{h}` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import modgcd_multivariate | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, y = ring("x, y", ZZ) | |
>>> f = x**2 - y**2 | |
>>> g = x**2 + 2*x*y + y**2 | |
>>> h, cff, cfg = modgcd_multivariate(f, g) | |
>>> h, cff, cfg | |
(x + y, x - y, x + y) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
>>> R, x, y, z = ring("x, y, z", ZZ) | |
>>> f = x*z**2 - y*z**2 | |
>>> g = x**2*z + z | |
>>> h, cff, cfg = modgcd_multivariate(f, g) | |
>>> h, cff, cfg | |
(z, x*z - y*z, x**2 + 1) | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
References | |
========== | |
1. [Monagan00]_ | |
2. [Brown71]_ | |
See also | |
======== | |
_modgcd_multivariate_p | |
""" | |
assert f.ring == g.ring and f.ring.domain.is_ZZ | |
result = _trivial_gcd(f, g) | |
if result is not None: | |
return result | |
ring = f.ring | |
k = ring.ngens | |
# divide out integer content | |
cf, f = f.primitive() | |
cg, g = g.primitive() | |
ch = ring.domain.gcd(cf, cg) | |
gamma = ring.domain.gcd(f.LC, g.LC) | |
badprimes = ring.domain.one | |
for i in range(k): | |
badprimes *= ring.domain.gcd(_swap(f, i).LC, _swap(g, i).LC) | |
degbound = [min(fdeg, gdeg) for fdeg, gdeg in zip(f.degrees(), g.degrees())] | |
contbound = list(degbound) | |
m = 1 | |
p = 1 | |
while True: | |
p = nextprime(p) | |
while badprimes % p == 0: | |
p = nextprime(p) | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
try: | |
# monic GCD of fp, gp in Z_p[x_0, ..., x_{k-2}, y] | |
hp = _modgcd_multivariate_p(fp, gp, p, degbound, contbound) | |
except ModularGCDFailed: | |
m = 1 | |
continue | |
if hp is None: | |
continue | |
hp = hp.mul_ground(gamma).trunc_ground(p) | |
if m == 1: | |
m = p | |
hlastm = hp | |
continue | |
hm = _chinese_remainder_reconstruction_multivariate(hp, hlastm, p, m) | |
m *= p | |
if not hm == hlastm: | |
hlastm = hm | |
continue | |
h = hm.primitive()[1] | |
fquo, frem = f.div(h) | |
gquo, grem = g.div(h) | |
if not frem and not grem: | |
if h.LC < 0: | |
ch = -ch | |
h = h.mul_ground(ch) | |
cff = fquo.mul_ground(cf // ch) | |
cfg = gquo.mul_ground(cg // ch) | |
return h, cff, cfg | |
def _gf_div(f, g, p): | |
r""" | |
Compute `\frac f g` modulo `p` for two univariate polynomials over | |
`\mathbb Z_p`. | |
""" | |
ring = f.ring | |
densequo, denserem = gf_div(f.to_dense(), g.to_dense(), p, ring.domain) | |
return ring.from_dense(densequo), ring.from_dense(denserem) | |
def _rational_function_reconstruction(c, p, m): | |
r""" | |
Reconstruct a rational function `\frac a b` in `\mathbb Z_p(t)` from | |
.. math:: | |
c = \frac a b \; \mathrm{mod} \, m, | |
where `c` and `m` are polynomials in `\mathbb Z_p[t]` and `m` has | |
positive degree. | |
The algorithm is based on the Euclidean Algorithm. In general, `m` is | |
not irreducible, so it is possible that `b` is not invertible modulo | |
`m`. In that case ``None`` is returned. | |
Parameters | |
========== | |
c : PolyElement | |
univariate polynomial in `\mathbb Z[t]` | |
p : Integer | |
prime number | |
m : PolyElement | |
modulus, not necessarily irreducible | |
Returns | |
======= | |
frac : FracElement | |
either `\frac a b` in `\mathbb Z(t)` or ``None`` | |
References | |
========== | |
1. [Hoeij04]_ | |
""" | |
ring = c.ring | |
domain = ring.domain | |
M = m.degree() | |
N = M // 2 | |
D = M - N - 1 | |
r0, s0 = m, ring.zero | |
r1, s1 = c, ring.one | |
while r1.degree() > N: | |
quo = _gf_div(r0, r1, p)[0] | |
r0, r1 = r1, (r0 - quo*r1).trunc_ground(p) | |
s0, s1 = s1, (s0 - quo*s1).trunc_ground(p) | |
a, b = r1, s1 | |
if b.degree() > D or _gf_gcd(b, m, p) != 1: | |
return None | |
lc = b.LC | |
if lc != 1: | |
lcinv = domain.invert(lc, p) | |
a = a.mul_ground(lcinv).trunc_ground(p) | |
b = b.mul_ground(lcinv).trunc_ground(p) | |
field = ring.to_field() | |
return field(a) / field(b) | |
def _rational_reconstruction_func_coeffs(hm, p, m, ring, k): | |
r""" | |
Reconstruct every coefficient `c_h` of a polynomial `h` in | |
`\mathbb Z_p(t_k)[t_1, \ldots, t_{k-1}][x, z]` from the corresponding | |
coefficient `c_{h_m}` of a polynomial `h_m` in | |
`\mathbb Z_p[t_1, \ldots, t_k][x, z] \cong \mathbb Z_p[t_k][t_1, \ldots, t_{k-1}][x, z]` | |
such that | |
.. math:: | |
c_{h_m} = c_h \; \mathrm{mod} \, m, | |
where `m \in \mathbb Z_p[t]`. | |
The reconstruction is based on the Euclidean Algorithm. In general, `m` | |
is not irreducible, so it is possible that this fails for some | |
coefficient. In that case ``None`` is returned. | |
Parameters | |
========== | |
hm : PolyElement | |
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` | |
p : Integer | |
prime number, modulus of `\mathbb Z_p` | |
m : PolyElement | |
modulus, polynomial in `\mathbb Z[t]`, not necessarily irreducible | |
ring : PolyRing | |
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]`, `h` will be an | |
element of this ring | |
k : Integer | |
index of the parameter `t_k` which will be reconstructed | |
Returns | |
======= | |
h : PolyElement | |
reconstructed polynomial in | |
`\mathbb Z(t_k)[t_1, \ldots, t_{k-1}][x, z]` or ``None`` | |
See also | |
======== | |
_rational_function_reconstruction | |
""" | |
h = ring.zero | |
for monom, coeff in hm.iterterms(): | |
if k == 0: | |
coeffh = _rational_function_reconstruction(coeff, p, m) | |
if not coeffh: | |
return None | |
else: | |
coeffh = ring.domain.zero | |
for mon, c in coeff.drop_to_ground(k).iterterms(): | |
ch = _rational_function_reconstruction(c, p, m) | |
if not ch: | |
return None | |
coeffh[mon] = ch | |
h[monom] = coeffh | |
return h | |
def _gf_gcdex(f, g, p): | |
r""" | |
Extended Euclidean Algorithm for two univariate polynomials over | |
`\mathbb Z_p`. | |
Returns polynomials `s, t` and `h`, such that `h` is the GCD of `f` and | |
`g` and `sf + tg = h \; \mathrm{mod} \, p`. | |
""" | |
ring = f.ring | |
s, t, h = gf_gcdex(f.to_dense(), g.to_dense(), p, ring.domain) | |
return ring.from_dense(s), ring.from_dense(t), ring.from_dense(h) | |
def _trunc(f, minpoly, p): | |
r""" | |
Compute the reduced representation of a polynomial `f` in | |
`\mathbb Z_p[z] / (\check m_{\alpha}(z))[x]` | |
Parameters | |
========== | |
f : PolyElement | |
polynomial in `\mathbb Z[x, z]` | |
minpoly : PolyElement | |
polynomial `\check m_{\alpha} \in \mathbb Z[z]`, not necessarily | |
irreducible | |
p : Integer | |
prime number, modulus of `\mathbb Z_p` | |
Returns | |
======= | |
ftrunc : PolyElement | |
polynomial in `\mathbb Z[x, z]`, reduced modulo | |
`\check m_{\alpha}(z)` and `p` | |
""" | |
ring = f.ring | |
minpoly = minpoly.set_ring(ring) | |
p_ = ring.ground_new(p) | |
return f.trunc_ground(p).rem([minpoly, p_]).trunc_ground(p) | |
def _euclidean_algorithm(f, g, minpoly, p): | |
r""" | |
Compute the monic GCD of two univariate polynomials in | |
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x]` with the Euclidean | |
Algorithm. | |
In general, `\check m_{\alpha}(z)` is not irreducible, so it is possible | |
that some leading coefficient is not invertible modulo | |
`\check m_{\alpha}(z)`. In that case ``None`` is returned. | |
Parameters | |
========== | |
f, g : PolyElement | |
polynomials in `\mathbb Z[x, z]` | |
minpoly : PolyElement | |
polynomial in `\mathbb Z[z]`, not necessarily irreducible | |
p : Integer | |
prime number, modulus of `\mathbb Z_p` | |
Returns | |
======= | |
h : PolyElement | |
GCD of `f` and `g` in `\mathbb Z[z, x]` or ``None``, coefficients | |
are in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]` | |
""" | |
ring = f.ring | |
f = _trunc(f, minpoly, p) | |
g = _trunc(g, minpoly, p) | |
while g: | |
rem = f | |
deg = g.degree(0) # degree in x | |
lcinv, _, gcd = _gf_gcdex(ring.dmp_LC(g), minpoly, p) | |
if not gcd == 1: | |
return None | |
while True: | |
degrem = rem.degree(0) # degree in x | |
if degrem < deg: | |
break | |
quo = (lcinv * ring.dmp_LC(rem)).set_ring(ring) | |
rem = _trunc(rem - g.mul_monom((degrem - deg, 0))*quo, minpoly, p) | |
f = g | |
g = rem | |
lcfinv = _gf_gcdex(ring.dmp_LC(f), minpoly, p)[0].set_ring(ring) | |
return _trunc(f * lcfinv, minpoly, p) | |
def _trial_division(f, h, minpoly, p=None): | |
r""" | |
Check if `h` divides `f` in | |
`\mathbb K[t_1, \ldots, t_k][z]/(m_{\alpha}(z))`, where `\mathbb K` is | |
either `\mathbb Q` or `\mathbb Z_p`. | |
This algorithm is based on pseudo division and does not use any | |
fractions. By default `\mathbb K` is `\mathbb Q`, if a prime number `p` | |
is given, `\mathbb Z_p` is chosen instead. | |
Parameters | |
========== | |
f, h : PolyElement | |
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` | |
minpoly : PolyElement | |
polynomial `m_{\alpha}(z)` in `\mathbb Z[t_1, \ldots, t_k][z]` | |
p : Integer or None | |
if `p` is given, `\mathbb K` is set to `\mathbb Z_p` instead of | |
`\mathbb Q`, default is ``None`` | |
Returns | |
======= | |
rem : PolyElement | |
remainder of `\frac f h` | |
References | |
========== | |
.. [1] [Hoeij02]_ | |
""" | |
ring = f.ring | |
zxring = ring.clone(symbols=(ring.symbols[1], ring.symbols[0])) | |
minpoly = minpoly.set_ring(ring) | |
rem = f | |
degrem = rem.degree() | |
degh = h.degree() | |
degm = minpoly.degree(1) | |
lch = _LC(h).set_ring(ring) | |
lcm = minpoly.LC | |
while rem and degrem >= degh: | |
# polynomial in Z[t_1, ..., t_k][z] | |
lcrem = _LC(rem).set_ring(ring) | |
rem = rem*lch - h.mul_monom((degrem - degh, 0))*lcrem | |
if p: | |
rem = rem.trunc_ground(p) | |
degrem = rem.degree(1) | |
while rem and degrem >= degm: | |
# polynomial in Z[t_1, ..., t_k][x] | |
lcrem = _LC(rem.set_ring(zxring)).set_ring(ring) | |
rem = rem.mul_ground(lcm) - minpoly.mul_monom((0, degrem - degm))*lcrem | |
if p: | |
rem = rem.trunc_ground(p) | |
degrem = rem.degree(1) | |
degrem = rem.degree() | |
return rem | |
def _evaluate_ground(f, i, a): | |
r""" | |
Evaluate a polynomial `f` at `a` in the `i`-th variable of the ground | |
domain. | |
""" | |
ring = f.ring.clone(domain=f.ring.domain.ring.drop(i)) | |
fa = ring.zero | |
for monom, coeff in f.iterterms(): | |
fa[monom] = coeff.evaluate(i, a) | |
return fa | |
def _func_field_modgcd_p(f, g, minpoly, p): | |
r""" | |
Compute the GCD of two polynomials `f` and `g` in | |
`\mathbb Z_p(t_1, \ldots, t_k)[z]/(\check m_\alpha(z))[x]`. | |
The algorithm reduces the problem step by step by evaluating the | |
polynomials `f` and `g` at `t_k = a` for suitable `a \in \mathbb Z_p` | |
and then calls itself recursively to compute the GCD in | |
`\mathbb Z_p(t_1, \ldots, t_{k-1})[z]/(\check m_\alpha(z))[x]`. If these | |
recursive calls are successful, the GCD over `k` variables is | |
interpolated, otherwise the algorithm returns ``None``. After | |
interpolation, Rational Function Reconstruction is used to obtain the | |
correct coefficients. If this fails, a new evaluation point has to be | |
chosen, otherwise the desired polynomial is obtained by clearing | |
denominators. The result is verified with a fraction free trial | |
division. | |
Parameters | |
========== | |
f, g : PolyElement | |
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` | |
minpoly : PolyElement | |
polynomial in `\mathbb Z[t_1, \ldots, t_k][z]`, not necessarily | |
irreducible | |
p : Integer | |
prime number, modulus of `\mathbb Z_p` | |
Returns | |
======= | |
h : PolyElement | |
primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of the | |
GCD of the polynomials `f` and `g` or ``None``, coefficients are | |
in `\left[ -\frac{p-1} 2, \frac{p-1} 2 \right]` | |
References | |
========== | |
1. [Hoeij04]_ | |
""" | |
ring = f.ring | |
domain = ring.domain # Z[t_1, ..., t_k] | |
if isinstance(domain, PolynomialRing): | |
k = domain.ngens | |
else: | |
return _euclidean_algorithm(f, g, minpoly, p) | |
if k == 1: | |
qdomain = domain.ring.to_field() | |
else: | |
qdomain = domain.ring.drop_to_ground(k - 1) | |
qdomain = qdomain.clone(domain=qdomain.domain.ring.to_field()) | |
qring = ring.clone(domain=qdomain) # = Z(t_k)[t_1, ..., t_{k-1}][x, z] | |
n = 1 | |
d = 1 | |
# polynomial in Z_p[t_1, ..., t_k][z] | |
gamma = ring.dmp_LC(f) * ring.dmp_LC(g) | |
# polynomial in Z_p[t_1, ..., t_k] | |
delta = minpoly.LC | |
evalpoints = [] | |
heval = [] | |
LMlist = [] | |
points = list(range(p)) | |
while points: | |
a = random.sample(points, 1)[0] | |
points.remove(a) | |
if k == 1: | |
test = delta.evaluate(k-1, a) % p == 0 | |
else: | |
test = delta.evaluate(k-1, a).trunc_ground(p) == 0 | |
if test: | |
continue | |
gammaa = _evaluate_ground(gamma, k-1, a) | |
minpolya = _evaluate_ground(minpoly, k-1, a) | |
if gammaa.rem([minpolya, gammaa.ring(p)]) == 0: | |
continue | |
fa = _evaluate_ground(f, k-1, a) | |
ga = _evaluate_ground(g, k-1, a) | |
# polynomial in Z_p[x, t_1, ..., t_{k-1}, z]/(minpoly) | |
ha = _func_field_modgcd_p(fa, ga, minpolya, p) | |
if ha is None: | |
d += 1 | |
if d > n: | |
return None | |
continue | |
if ha == 1: | |
return ha | |
LM = [ha.degree()] + [0]*(k-1) | |
if k > 1: | |
for monom, coeff in ha.iterterms(): | |
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): | |
LM[1:] = coeff.LM | |
evalpoints_a = [a] | |
heval_a = [ha] | |
if k == 1: | |
m = qring.domain.get_ring().one | |
else: | |
m = qring.domain.domain.get_ring().one | |
t = m.ring.gens[0] | |
for b, hb, LMhb in zip(evalpoints, heval, LMlist): | |
if LMhb == LM: | |
evalpoints_a.append(b) | |
heval_a.append(hb) | |
m *= (t - b) | |
m = m.trunc_ground(p) | |
evalpoints.append(a) | |
heval.append(ha) | |
LMlist.append(LM) | |
n += 1 | |
# polynomial in Z_p[t_1, ..., t_k][x, z] | |
h = _interpolate_multivariate(evalpoints_a, heval_a, ring, k-1, p, ground=True) | |
# polynomial in Z_p(t_k)[t_1, ..., t_{k-1}][x, z] | |
h = _rational_reconstruction_func_coeffs(h, p, m, qring, k-1) | |
if h is None: | |
continue | |
if k == 1: | |
dom = qring.domain.field | |
den = dom.ring.one | |
for coeff in h.itercoeffs(): | |
den = dom.ring.from_dense(gf_lcm(den.to_dense(), coeff.denom.to_dense(), | |
p, dom.domain)) | |
else: | |
dom = qring.domain.domain.field | |
den = dom.ring.one | |
for coeff in h.itercoeffs(): | |
for c in coeff.itercoeffs(): | |
den = dom.ring.from_dense(gf_lcm(den.to_dense(), c.denom.to_dense(), | |
p, dom.domain)) | |
den = qring.domain_new(den.trunc_ground(p)) | |
h = ring(h.mul_ground(den).as_expr()).trunc_ground(p) | |
if not _trial_division(f, h, minpoly, p) and not _trial_division(g, h, minpoly, p): | |
return h | |
return None | |
def _integer_rational_reconstruction(c, m, domain): | |
r""" | |
Reconstruct a rational number `\frac a b` from | |
.. math:: | |
c = \frac a b \; \mathrm{mod} \, m, | |
where `c` and `m` are integers. | |
The algorithm is based on the Euclidean Algorithm. In general, `m` is | |
not a prime number, so it is possible that `b` is not invertible modulo | |
`m`. In that case ``None`` is returned. | |
Parameters | |
========== | |
c : Integer | |
`c = \frac a b \; \mathrm{mod} \, m` | |
m : Integer | |
modulus, not necessarily prime | |
domain : IntegerRing | |
`a, b, c` are elements of ``domain`` | |
Returns | |
======= | |
frac : Rational | |
either `\frac a b` in `\mathbb Q` or ``None`` | |
References | |
========== | |
1. [Wang81]_ | |
""" | |
if c < 0: | |
c += m | |
r0, s0 = m, domain.zero | |
r1, s1 = c, domain.one | |
bound = sqrt(m / 2) # still correct if replaced by ZZ.sqrt(m // 2) ? | |
while int(r1) >= bound: | |
quo = r0 // r1 | |
r0, r1 = r1, r0 - quo*r1 | |
s0, s1 = s1, s0 - quo*s1 | |
if abs(int(s1)) >= bound: | |
return None | |
if s1 < 0: | |
a, b = -r1, -s1 | |
elif s1 > 0: | |
a, b = r1, s1 | |
else: | |
return None | |
field = domain.get_field() | |
return field(a) / field(b) | |
def _rational_reconstruction_int_coeffs(hm, m, ring): | |
r""" | |
Reconstruct every rational coefficient `c_h` of a polynomial `h` in | |
`\mathbb Q[t_1, \ldots, t_k][x, z]` from the corresponding integer | |
coefficient `c_{h_m}` of a polynomial `h_m` in | |
`\mathbb Z[t_1, \ldots, t_k][x, z]` such that | |
.. math:: | |
c_{h_m} = c_h \; \mathrm{mod} \, m, | |
where `m \in \mathbb Z`. | |
The reconstruction is based on the Euclidean Algorithm. In general, | |
`m` is not a prime number, so it is possible that this fails for some | |
coefficient. In that case ``None`` is returned. | |
Parameters | |
========== | |
hm : PolyElement | |
polynomial in `\mathbb Z[t_1, \ldots, t_k][x, z]` | |
m : Integer | |
modulus, not necessarily prime | |
ring : PolyRing | |
`\mathbb Q[t_1, \ldots, t_k][x, z]`, `h` will be an element of this | |
ring | |
Returns | |
======= | |
h : PolyElement | |
reconstructed polynomial in `\mathbb Q[t_1, \ldots, t_k][x, z]` or | |
``None`` | |
See also | |
======== | |
_integer_rational_reconstruction | |
""" | |
h = ring.zero | |
if isinstance(ring.domain, PolynomialRing): | |
reconstruction = _rational_reconstruction_int_coeffs | |
domain = ring.domain.ring | |
else: | |
reconstruction = _integer_rational_reconstruction | |
domain = hm.ring.domain | |
for monom, coeff in hm.iterterms(): | |
coeffh = reconstruction(coeff, m, domain) | |
if not coeffh: | |
return None | |
h[monom] = coeffh | |
return h | |
def _func_field_modgcd_m(f, g, minpoly): | |
r""" | |
Compute the GCD of two polynomials in | |
`\mathbb Q(t_1, \ldots, t_k)[z]/(m_{\alpha}(z))[x]` using a modular | |
algorithm. | |
The algorithm computes the GCD of two polynomials `f` and `g` by | |
calculating the GCD in | |
`\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha}(z))[x]` for | |
suitable primes `p` and the primitive associate `\check m_{\alpha}(z)` | |
of `m_{\alpha}(z)`. Then the coefficients are reconstructed with the | |
Chinese Remainder Theorem and Rational Reconstruction. To compute the | |
GCD over `\mathbb Z_p(t_1, \ldots, t_k)[z] / (\check m_{\alpha})[x]`, | |
the recursive subroutine ``_func_field_modgcd_p`` is used. To verify the | |
result in `\mathbb Q(t_1, \ldots, t_k)[z] / (m_{\alpha}(z))[x]`, a | |
fraction free trial division is used. | |
Parameters | |
========== | |
f, g : PolyElement | |
polynomials in `\mathbb Z[t_1, \ldots, t_k][x, z]` | |
minpoly : PolyElement | |
irreducible polynomial in `\mathbb Z[t_1, \ldots, t_k][z]` | |
Returns | |
======= | |
h : PolyElement | |
the primitive associate in `\mathbb Z[t_1, \ldots, t_k][x, z]` of | |
the GCD of `f` and `g` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import _func_field_modgcd_m | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x, z = ring('x, z', ZZ) | |
>>> minpoly = (z**2 - 2).drop(0) | |
>>> f = x**2 + 2*x*z + 2 | |
>>> g = x + z | |
>>> _func_field_modgcd_m(f, g, minpoly) | |
x + z | |
>>> D, t = ring('t', ZZ) | |
>>> R, x, z = ring('x, z', D) | |
>>> minpoly = (z**2-3).drop(0) | |
>>> f = x**2 + (t + 1)*x*z + 3*t | |
>>> g = x*z + 3*t | |
>>> _func_field_modgcd_m(f, g, minpoly) | |
x + t*z | |
References | |
========== | |
1. [Hoeij04]_ | |
See also | |
======== | |
_func_field_modgcd_p | |
""" | |
ring = f.ring | |
domain = ring.domain | |
if isinstance(domain, PolynomialRing): | |
k = domain.ngens | |
QQdomain = domain.ring.clone(domain=domain.domain.get_field()) | |
QQring = ring.clone(domain=QQdomain) | |
else: | |
k = 0 | |
QQring = ring.clone(domain=ring.domain.get_field()) | |
cf, f = f.primitive() | |
cg, g = g.primitive() | |
# polynomial in Z[t_1, ..., t_k][z] | |
gamma = ring.dmp_LC(f) * ring.dmp_LC(g) | |
# polynomial in Z[t_1, ..., t_k] | |
delta = minpoly.LC | |
p = 1 | |
primes = [] | |
hplist = [] | |
LMlist = [] | |
while True: | |
p = nextprime(p) | |
if gamma.trunc_ground(p) == 0: | |
continue | |
if k == 0: | |
test = (delta % p == 0) | |
else: | |
test = (delta.trunc_ground(p) == 0) | |
if test: | |
continue | |
fp = f.trunc_ground(p) | |
gp = g.trunc_ground(p) | |
minpolyp = minpoly.trunc_ground(p) | |
hp = _func_field_modgcd_p(fp, gp, minpolyp, p) | |
if hp is None: | |
continue | |
if hp == 1: | |
return ring.one | |
LM = [hp.degree()] + [0]*k | |
if k > 0: | |
for monom, coeff in hp.iterterms(): | |
if monom[0] == LM[0] and coeff.LM > tuple(LM[1:]): | |
LM[1:] = coeff.LM | |
hm = hp | |
m = p | |
for q, hq, LMhq in zip(primes, hplist, LMlist): | |
if LMhq == LM: | |
hm = _chinese_remainder_reconstruction_multivariate(hq, hm, q, m) | |
m *= q | |
primes.append(p) | |
hplist.append(hp) | |
LMlist.append(LM) | |
hm = _rational_reconstruction_int_coeffs(hm, m, QQring) | |
if hm is None: | |
continue | |
if k == 0: | |
h = hm.clear_denoms()[1] | |
else: | |
den = domain.domain.one | |
for coeff in hm.itercoeffs(): | |
den = domain.domain.lcm(den, coeff.clear_denoms()[0]) | |
h = hm.mul_ground(den) | |
# convert back to Z[t_1, ..., t_k][x, z] from Q[t_1, ..., t_k][x, z] | |
h = h.set_ring(ring) | |
h = h.primitive()[1] | |
if not (_trial_division(f.mul_ground(cf), h, minpoly) or | |
_trial_division(g.mul_ground(cg), h, minpoly)): | |
return h | |
def _to_ZZ_poly(f, ring): | |
r""" | |
Compute an associate of a polynomial | |
`f \in \mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` in | |
`\mathbb Z[x_1, \ldots, x_{n-1}][z] / (\check m_{\alpha}(z))[x_0]`, | |
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate | |
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over | |
`\mathbb Q`. | |
Parameters | |
========== | |
f : PolyElement | |
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` | |
ring : PolyRing | |
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` | |
Returns | |
======= | |
f_ : PolyElement | |
associate of `f` in | |
`\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` | |
""" | |
f_ = ring.zero | |
if isinstance(ring.domain, PolynomialRing): | |
domain = ring.domain.domain | |
else: | |
domain = ring.domain | |
den = domain.one | |
for coeff in f.itercoeffs(): | |
for c in coeff.to_list(): | |
if c: | |
den = domain.lcm(den, c.denominator) | |
for monom, coeff in f.iterterms(): | |
coeff = coeff.to_list() | |
m = ring.domain.one | |
if isinstance(ring.domain, PolynomialRing): | |
m = m.mul_monom(monom[1:]) | |
n = len(coeff) | |
for i in range(n): | |
if coeff[i]: | |
c = domain.convert(coeff[i] * den) * m | |
if (monom[0], n-i-1) not in f_: | |
f_[(monom[0], n-i-1)] = c | |
else: | |
f_[(monom[0], n-i-1)] += c | |
return f_ | |
def _to_ANP_poly(f, ring): | |
r""" | |
Convert a polynomial | |
`f \in \mathbb Z[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha}(z))[x_0]` | |
to a polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]`, | |
where `\check m_{\alpha}(z) \in \mathbb Z[z]` is the primitive associate | |
of the minimal polynomial `m_{\alpha}(z)` of `\alpha` over | |
`\mathbb Q`. | |
Parameters | |
========== | |
f : PolyElement | |
polynomial in `\mathbb Z[x_1, \ldots, x_{n-1}][x_0, z]` | |
ring : PolyRing | |
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` | |
Returns | |
======= | |
f_ : PolyElement | |
polynomial in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` | |
""" | |
domain = ring.domain | |
f_ = ring.zero | |
if isinstance(f.ring.domain, PolynomialRing): | |
for monom, coeff in f.iterterms(): | |
for mon, coef in coeff.iterterms(): | |
m = (monom[0],) + mon | |
c = domain([domain.domain(coef)] + [0]*monom[1]) | |
if m not in f_: | |
f_[m] = c | |
else: | |
f_[m] += c | |
else: | |
for monom, coeff in f.iterterms(): | |
m = (monom[0],) | |
c = domain([domain.domain(coeff)] + [0]*monom[1]) | |
if m not in f_: | |
f_[m] = c | |
else: | |
f_[m] += c | |
return f_ | |
def _minpoly_from_dense(minpoly, ring): | |
r""" | |
Change representation of the minimal polynomial from ``DMP`` to | |
``PolyElement`` for a given ring. | |
""" | |
minpoly_ = ring.zero | |
for monom, coeff in minpoly.terms(): | |
minpoly_[monom] = ring.domain(coeff) | |
return minpoly_ | |
def _primitive_in_x0(f): | |
r""" | |
Compute the content in `x_0` and the primitive part of a polynomial `f` | |
in | |
`\mathbb Q(\alpha)[x_0, x_1, \ldots, x_{n-1}] \cong \mathbb Q(\alpha)[x_1, \ldots, x_{n-1}][x_0]`. | |
""" | |
fring = f.ring | |
ring = fring.drop_to_ground(*range(1, fring.ngens)) | |
dom = ring.domain.ring | |
f_ = ring(f.as_expr()) | |
cont = dom.zero | |
for coeff in f_.itercoeffs(): | |
cont = func_field_modgcd(cont, coeff)[0] | |
if cont == dom.one: | |
return cont, f | |
return cont, f.quo(cont.set_ring(fring)) | |
# TODO: add support for algebraic function fields | |
def func_field_modgcd(f, g): | |
r""" | |
Compute the GCD of two polynomials `f` and `g` in | |
`\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` using a modular algorithm. | |
The algorithm first computes the primitive associate | |
`\check m_{\alpha}(z)` of the minimal polynomial `m_{\alpha}` in | |
`\mathbb{Z}[z]` and the primitive associates of `f` and `g` in | |
`\mathbb{Z}[x_1, \ldots, x_{n-1}][z]/(\check m_{\alpha})[x_0]`. Then it | |
computes the GCD in | |
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]`. | |
This is done by calculating the GCD in | |
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` for | |
suitable primes `p` and then reconstructing the coefficients with the | |
Chinese Remainder Theorem and Rational Reconstuction. The GCD over | |
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]` is | |
computed with a recursive subroutine, which evaluates the polynomials at | |
`x_{n-1} = a` for suitable evaluation points `a \in \mathbb Z_p` and | |
then calls itself recursively until the ground domain does no longer | |
contain any parameters. For | |
`\mathbb{Z}_p[z]/(\check m_{\alpha}(z))[x_0]` the Euclidean Algorithm is | |
used. The results of those recursive calls are then interpolated and | |
Rational Function Reconstruction is used to obtain the correct | |
coefficients. The results, both in | |
`\mathbb Q(x_1, \ldots, x_{n-1})[z]/(m_{\alpha}(z))[x_0]` and | |
`\mathbb{Z}_p(x_1, \ldots, x_{n-1})[z]/(\check m_{\alpha}(z))[x_0]`, are | |
verified by a fraction free trial division. | |
Apart from the above GCD computation some GCDs in | |
`\mathbb Q(\alpha)[x_1, \ldots, x_{n-1}]` have to be calculated, | |
because treating the polynomials as univariate ones can result in | |
a spurious content of the GCD. For this ``func_field_modgcd`` is | |
called recursively. | |
Parameters | |
========== | |
f, g : PolyElement | |
polynomials in `\mathbb Q(\alpha)[x_0, \ldots, x_{n-1}]` | |
Returns | |
======= | |
h : PolyElement | |
monic GCD of the polynomials `f` and `g` | |
cff : PolyElement | |
cofactor of `f`, i.e. `\frac f h` | |
cfg : PolyElement | |
cofactor of `g`, i.e. `\frac g h` | |
Examples | |
======== | |
>>> from sympy.polys.modulargcd import func_field_modgcd | |
>>> from sympy.polys import AlgebraicField, QQ, ring | |
>>> from sympy import sqrt | |
>>> A = AlgebraicField(QQ, sqrt(2)) | |
>>> R, x = ring('x', A) | |
>>> f = x**2 - 2 | |
>>> g = x + sqrt(2) | |
>>> h, cff, cfg = func_field_modgcd(f, g) | |
>>> h == x + sqrt(2) | |
True | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
>>> R, x, y = ring('x, y', A) | |
>>> f = x**2 + 2*sqrt(2)*x*y + 2*y**2 | |
>>> g = x + sqrt(2)*y | |
>>> h, cff, cfg = func_field_modgcd(f, g) | |
>>> h == x + sqrt(2)*y | |
True | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
>>> f = x + sqrt(2)*y | |
>>> g = x + y | |
>>> h, cff, cfg = func_field_modgcd(f, g) | |
>>> h == R.one | |
True | |
>>> cff * h == f | |
True | |
>>> cfg * h == g | |
True | |
References | |
========== | |
1. [Hoeij04]_ | |
""" | |
ring = f.ring | |
domain = ring.domain | |
n = ring.ngens | |
assert ring == g.ring and domain.is_Algebraic | |
result = _trivial_gcd(f, g) | |
if result is not None: | |
return result | |
z = Dummy('z') | |
ZZring = ring.clone(symbols=ring.symbols + (z,), domain=domain.domain.get_ring()) | |
if n == 1: | |
f_ = _to_ZZ_poly(f, ZZring) | |
g_ = _to_ZZ_poly(g, ZZring) | |
minpoly = ZZring.drop(0).from_dense(domain.mod.to_list()) | |
h = _func_field_modgcd_m(f_, g_, minpoly) | |
h = _to_ANP_poly(h, ring) | |
else: | |
# contx0f in Q(a)[x_1, ..., x_{n-1}], f in Q(a)[x_0, ..., x_{n-1}] | |
contx0f, f = _primitive_in_x0(f) | |
contx0g, g = _primitive_in_x0(g) | |
contx0h = func_field_modgcd(contx0f, contx0g)[0] | |
ZZring_ = ZZring.drop_to_ground(*range(1, n)) | |
f_ = _to_ZZ_poly(f, ZZring_) | |
g_ = _to_ZZ_poly(g, ZZring_) | |
minpoly = _minpoly_from_dense(domain.mod, ZZring_.drop(0)) | |
h = _func_field_modgcd_m(f_, g_, minpoly) | |
h = _to_ANP_poly(h, ring) | |
contx0h_, h = _primitive_in_x0(h) | |
h *= contx0h.set_ring(ring) | |
f *= contx0f.set_ring(ring) | |
g *= contx0g.set_ring(ring) | |
h = h.quo_ground(h.LC) | |
return h, f.quo(h), g.quo(h) | |