Spaces:
Running
Running
""" | |
Tests for the basic functionality of the SDM class. | |
""" | |
from itertools import product | |
from sympy.core.singleton import S | |
from sympy.external.gmpy import GROUND_TYPES | |
from sympy.testing.pytest import raises | |
from sympy.polys.domains import QQ, ZZ, EXRAW | |
from sympy.polys.matrices.sdm import SDM | |
from sympy.polys.matrices.ddm import DDM | |
from sympy.polys.matrices.exceptions import (DMBadInputError, DMDomainError, | |
DMShapeError) | |
def test_SDM(): | |
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ) | |
assert A.domain == ZZ | |
assert A.shape == (2, 2) | |
assert dict(A) == {0:{0:ZZ(1)}} | |
raises(DMBadInputError, lambda: SDM({5:{1:ZZ(0)}}, (2, 2), ZZ)) | |
raises(DMBadInputError, lambda: SDM({0:{5:ZZ(0)}}, (2, 2), ZZ)) | |
def test_DDM_str(): | |
sdm = SDM({0:{0:ZZ(1)}, 1:{1:ZZ(1)}}, (2, 2), ZZ) | |
assert str(sdm) == '{0: {0: 1}, 1: {1: 1}}' | |
if GROUND_TYPES == 'gmpy': # pragma: no cover | |
assert repr(sdm) == 'SDM({0: {0: mpz(1)}, 1: {1: mpz(1)}}, (2, 2), ZZ)' | |
else: # pragma: no cover | |
assert repr(sdm) == 'SDM({0: {0: 1}, 1: {1: 1}}, (2, 2), ZZ)' | |
def test_SDM_new(): | |
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ) | |
B = A.new({}, (2, 2), ZZ) | |
assert B == SDM({}, (2, 2), ZZ) | |
def test_SDM_copy(): | |
A = SDM({0:{0:ZZ(1)}}, (2, 2), ZZ) | |
B = A.copy() | |
assert A == B | |
A[0][0] = ZZ(2) | |
assert A != B | |
def test_SDM_from_list(): | |
A = SDM.from_list([[ZZ(0), ZZ(1)], [ZZ(1), ZZ(0)]], (2, 2), ZZ) | |
assert A == SDM({0:{1:ZZ(1)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) | |
raises(DMBadInputError, lambda: SDM.from_list([[ZZ(0)], [ZZ(0), ZZ(1)]], (2, 2), ZZ)) | |
raises(DMBadInputError, lambda: SDM.from_list([[ZZ(0), ZZ(1)]], (2, 2), ZZ)) | |
def test_SDM_to_list(): | |
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ) | |
assert A.to_list() == [[ZZ(0), ZZ(1)], [ZZ(0), ZZ(0)]] | |
A = SDM({}, (0, 2), ZZ) | |
assert A.to_list() == [] | |
A = SDM({}, (2, 0), ZZ) | |
assert A.to_list() == [[], []] | |
def test_SDM_to_list_flat(): | |
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ) | |
assert A.to_list_flat() == [ZZ(0), ZZ(1), ZZ(0), ZZ(0)] | |
def test_SDM_to_dok(): | |
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ) | |
assert A.to_dok() == {(0, 1): ZZ(1)} | |
def test_SDM_from_ddm(): | |
A = DDM([[ZZ(1), ZZ(0)], [ZZ(1), ZZ(0)]], (2, 2), ZZ) | |
B = SDM.from_ddm(A) | |
assert B.domain == ZZ | |
assert B.shape == (2, 2) | |
assert dict(B) == {0:{0:ZZ(1)}, 1:{0:ZZ(1)}} | |
def test_SDM_to_ddm(): | |
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ) | |
B = DDM([[ZZ(0), ZZ(1)], [ZZ(0), ZZ(0)]], (2, 2), ZZ) | |
assert A.to_ddm() == B | |
def test_SDM_to_sdm(): | |
A = SDM({0:{1: ZZ(1)}}, (2, 2), ZZ) | |
assert A.to_sdm() == A | |
def test_SDM_getitem(): | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
assert A.getitem(0, 0) == ZZ.zero | |
assert A.getitem(0, 1) == ZZ.one | |
assert A.getitem(1, 0) == ZZ.zero | |
assert A.getitem(-2, -2) == ZZ.zero | |
assert A.getitem(-2, -1) == ZZ.one | |
assert A.getitem(-1, -2) == ZZ.zero | |
raises(IndexError, lambda: A.getitem(2, 0)) | |
raises(IndexError, lambda: A.getitem(0, 2)) | |
def test_SDM_setitem(): | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
A.setitem(0, 0, ZZ(1)) | |
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ) | |
A.setitem(1, 0, ZZ(1)) | |
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{0:ZZ(1)}}, (2, 2), ZZ) | |
A.setitem(1, 0, ZZ(0)) | |
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ) | |
# Repeat the above test so that this time the row is empty | |
A.setitem(1, 0, ZZ(0)) | |
assert A == SDM({0:{0:ZZ(1), 1:ZZ(1)}}, (2, 2), ZZ) | |
A.setitem(0, 0, ZZ(0)) | |
assert A == SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
# This time the row is there but column is empty | |
A.setitem(0, 0, ZZ(0)) | |
assert A == SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
raises(IndexError, lambda: A.setitem(2, 0, ZZ(1))) | |
raises(IndexError, lambda: A.setitem(0, 2, ZZ(1))) | |
def test_SDM_extract_slice(): | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
B = A.extract_slice(slice(1, 2), slice(1, 2)) | |
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ) | |
def test_SDM_extract(): | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
B = A.extract([1], [1]) | |
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ) | |
B = A.extract([1, 0], [1, 0]) | |
assert B == SDM({0:{0:ZZ(4), 1:ZZ(3)}, 1:{0:ZZ(2), 1:ZZ(1)}}, (2, 2), ZZ) | |
B = A.extract([1, 1], [1, 1]) | |
assert B == SDM({0:{0:ZZ(4), 1:ZZ(4)}, 1:{0:ZZ(4), 1:ZZ(4)}}, (2, 2), ZZ) | |
B = A.extract([-1], [-1]) | |
assert B == SDM({0:{0:ZZ(4)}}, (1, 1), ZZ) | |
A = SDM({}, (2, 2), ZZ) | |
B = A.extract([0, 1, 0], [0, 0]) | |
assert B == SDM({}, (3, 2), ZZ) | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
assert A.extract([], []) == SDM.zeros((0, 0), ZZ) | |
assert A.extract([1], []) == SDM.zeros((1, 0), ZZ) | |
assert A.extract([], [1]) == SDM.zeros((0, 1), ZZ) | |
raises(IndexError, lambda: A.extract([2], [0])) | |
raises(IndexError, lambda: A.extract([0], [2])) | |
raises(IndexError, lambda: A.extract([-3], [0])) | |
raises(IndexError, lambda: A.extract([0], [-3])) | |
def test_SDM_zeros(): | |
A = SDM.zeros((2, 2), ZZ) | |
assert A.domain == ZZ | |
assert A.shape == (2, 2) | |
assert dict(A) == {} | |
def test_SDM_ones(): | |
A = SDM.ones((1, 2), QQ) | |
assert A.domain == QQ | |
assert A.shape == (1, 2) | |
assert dict(A) == {0:{0:QQ(1), 1:QQ(1)}} | |
def test_SDM_eye(): | |
A = SDM.eye((2, 2), ZZ) | |
assert A.domain == ZZ | |
assert A.shape == (2, 2) | |
assert dict(A) == {0:{0:ZZ(1)}, 1:{1:ZZ(1)}} | |
def test_SDM_diag(): | |
A = SDM.diag([ZZ(1), ZZ(2)], ZZ, (2, 3)) | |
assert A == SDM({0:{0:ZZ(1)}, 1:{1:ZZ(2)}}, (2, 3), ZZ) | |
def test_SDM_transpose(): | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(1), 1:ZZ(3)}, 1:{0:ZZ(2), 1:ZZ(4)}}, (2, 2), ZZ) | |
assert A.transpose() == B | |
A = SDM({0:{1:ZZ(2)}}, (2, 2), ZZ) | |
B = SDM({1:{0:ZZ(2)}}, (2, 2), ZZ) | |
assert A.transpose() == B | |
A = SDM({0:{1:ZZ(2)}}, (1, 2), ZZ) | |
B = SDM({1:{0:ZZ(2)}}, (2, 1), ZZ) | |
assert A.transpose() == B | |
def test_SDM_mul(): | |
A = SDM({0:{0:ZZ(2)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ) | |
assert A*ZZ(2) == B | |
assert ZZ(2)*A == B | |
raises(TypeError, lambda: A*QQ(1, 2)) | |
raises(TypeError, lambda: QQ(1, 2)*A) | |
def test_SDM_mul_elementwise(): | |
A = SDM({0:{0:ZZ(2), 1:ZZ(2)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(4)}, 1:{0:ZZ(3)}}, (2, 2), ZZ) | |
C = SDM({0:{0:ZZ(8)}}, (2, 2), ZZ) | |
assert A.mul_elementwise(B) == C | |
assert B.mul_elementwise(A) == C | |
Aq = A.convert_to(QQ) | |
A1 = SDM({0:{0:ZZ(1)}}, (1, 1), ZZ) | |
raises(DMDomainError, lambda: Aq.mul_elementwise(B)) | |
raises(DMShapeError, lambda: A1.mul_elementwise(B)) | |
def test_SDM_matmul(): | |
A = SDM({0:{0:ZZ(2)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ) | |
assert A.matmul(A) == A*A == B | |
C = SDM({0:{0:ZZ(2)}}, (2, 2), QQ) | |
raises(DMDomainError, lambda: A.matmul(C)) | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(7), 1:ZZ(10)}, 1:{0:ZZ(15), 1:ZZ(22)}}, (2, 2), ZZ) | |
assert A.matmul(A) == A*A == B | |
A22 = SDM({0:{0:ZZ(4)}}, (2, 2), ZZ) | |
A32 = SDM({0:{0:ZZ(2)}}, (3, 2), ZZ) | |
A23 = SDM({0:{0:ZZ(4)}}, (2, 3), ZZ) | |
A33 = SDM({0:{0:ZZ(8)}}, (3, 3), ZZ) | |
A22 = SDM({0:{0:ZZ(8)}}, (2, 2), ZZ) | |
assert A32.matmul(A23) == A33 | |
assert A23.matmul(A32) == A22 | |
# XXX: @ not supported by SDM... | |
#assert A32.matmul(A23) == A32 @ A23 == A33 | |
#assert A23.matmul(A32) == A23 @ A32 == A22 | |
#raises(DMShapeError, lambda: A23 @ A22) | |
raises(DMShapeError, lambda: A23.matmul(A22)) | |
A = SDM({0: {0: ZZ(-1), 1: ZZ(1)}}, (1, 2), ZZ) | |
B = SDM({0: {0: ZZ(-1)}, 1: {0: ZZ(-1)}}, (2, 1), ZZ) | |
assert A.matmul(B) == A*B == SDM({}, (1, 1), ZZ) | |
def test_matmul_exraw(): | |
def dm(d): | |
result = {} | |
for i, row in d.items(): | |
row = {j:val for j, val in row.items() if val} | |
if row: | |
result[i] = row | |
return SDM(result, (2, 2), EXRAW) | |
values = [S.NegativeInfinity, S.NegativeOne, S.Zero, S.One, S.Infinity] | |
for a, b, c, d in product(*[values]*4): | |
Ad = dm({0: {0:a, 1:b}, 1: {0:c, 1:d}}) | |
Ad2 = dm({0: {0:a*a + b*c, 1:a*b + b*d}, 1:{0:c*a + d*c, 1: c*b + d*d}}) | |
assert Ad * Ad == Ad2 | |
def test_SDM_add(): | |
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ) | |
C = SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{1:ZZ(6)}}, (2, 2), ZZ) | |
assert A.add(B) == B.add(A) == A + B == B + A == C | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ) | |
C = SDM({0:{0:ZZ(1), 1:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ) | |
assert A.add(B) == B.add(A) == A + B == B + A == C | |
raises(TypeError, lambda: A + []) | |
def test_SDM_sub(): | |
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ) | |
B = SDM({0:{0:ZZ(1)}, 1:{0:ZZ(-2), 1:ZZ(3)}}, (2, 2), ZZ) | |
C = SDM({0:{0:ZZ(-1), 1:ZZ(1)}, 1:{0:ZZ(4)}}, (2, 2), ZZ) | |
assert A.sub(B) == A - B == C | |
raises(TypeError, lambda: A - []) | |
def test_SDM_neg(): | |
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ) | |
B = SDM({0:{1:ZZ(-1)}, 1:{0:ZZ(-2), 1:ZZ(-3)}}, (2, 2), ZZ) | |
assert A.neg() == -A == B | |
def test_SDM_convert_to(): | |
A = SDM({0:{1:ZZ(1)}, 1:{0:ZZ(2), 1:ZZ(3)}}, (2, 2), ZZ) | |
B = SDM({0:{1:QQ(1)}, 1:{0:QQ(2), 1:QQ(3)}}, (2, 2), QQ) | |
C = A.convert_to(QQ) | |
assert C == B | |
assert C.domain == QQ | |
D = A.convert_to(ZZ) | |
assert D == A | |
assert D.domain == ZZ | |
def test_SDM_hstack(): | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
B = SDM({1:{1:ZZ(1)}}, (2, 2), ZZ) | |
AA = SDM({0:{1:ZZ(1), 3:ZZ(1)}}, (2, 4), ZZ) | |
AB = SDM({0:{1:ZZ(1)}, 1:{3:ZZ(1)}}, (2, 4), ZZ) | |
assert SDM.hstack(A) == A | |
assert SDM.hstack(A, A) == AA | |
assert SDM.hstack(A, B) == AB | |
def test_SDM_vstack(): | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
B = SDM({1:{1:ZZ(1)}}, (2, 2), ZZ) | |
AA = SDM({0:{1:ZZ(1)}, 2:{1:ZZ(1)}}, (4, 2), ZZ) | |
AB = SDM({0:{1:ZZ(1)}, 3:{1:ZZ(1)}}, (4, 2), ZZ) | |
assert SDM.vstack(A) == A | |
assert SDM.vstack(A, A) == AA | |
assert SDM.vstack(A, B) == AB | |
def test_SDM_applyfunc(): | |
A = SDM({0:{1:ZZ(1)}}, (2, 2), ZZ) | |
B = SDM({0:{1:ZZ(2)}}, (2, 2), ZZ) | |
assert A.applyfunc(lambda x: 2*x, ZZ) == B | |
def test_SDM_inv(): | |
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) | |
B = SDM({0:{0:QQ(-2), 1:QQ(1)}, 1:{0:QQ(3, 2), 1:QQ(-1, 2)}}, (2, 2), QQ) | |
assert A.inv() == B | |
def test_SDM_det(): | |
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) | |
assert A.det() == QQ(-2) | |
def test_SDM_lu(): | |
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) | |
L = SDM({0:{0:QQ(1)}, 1:{0:QQ(3), 1:QQ(1)}}, (2, 2), QQ) | |
#U = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(-2)}}, (2, 2), QQ) | |
#swaps = [] | |
# This doesn't quite work. U has some nonzero elements in the lower part. | |
#assert A.lu() == (L, U, swaps) | |
assert A.lu()[0] == L | |
def test_SDM_lu_solve(): | |
A = SDM({0:{0:QQ(1), 1:QQ(2)}, 1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) | |
b = SDM({0:{0:QQ(1)}, 1:{0:QQ(2)}}, (2, 1), QQ) | |
x = SDM({1:{0:QQ(1, 2)}}, (2, 1), QQ) | |
assert A.matmul(x) == b | |
assert A.lu_solve(b) == x | |
def test_SDM_charpoly(): | |
A = SDM({0:{0:ZZ(1), 1:ZZ(2)}, 1:{0:ZZ(3), 1:ZZ(4)}}, (2, 2), ZZ) | |
assert A.charpoly() == [ZZ(1), ZZ(-5), ZZ(-2)] | |
def test_SDM_nullspace(): | |
# More tests are in test_nullspace.py | |
A = SDM({0:{0:QQ(1), 1:QQ(1)}}, (2, 2), QQ) | |
assert A.nullspace()[0] == SDM({0:{0:QQ(-1), 1:QQ(1)}}, (1, 2), QQ) | |
def test_SDM_rref(): | |
# More tests are in test_rref.py | |
A = SDM({0:{0:QQ(1), 1:QQ(2)}, | |
1:{0:QQ(3), 1:QQ(4)}}, (2, 2), QQ) | |
A_rref = SDM({0:{0:QQ(1)}, 1:{1:QQ(1)}}, (2, 2), QQ) | |
assert A.rref() == (A_rref, [0, 1]) | |
A = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(2)}, | |
1: {0: QQ(3), 2: QQ(4)}}, (2, 3), ZZ) | |
A_rref = SDM({0: {0: QQ(1,1), 2: QQ(4,3)}, | |
1: {1: QQ(1,1), 2: QQ(1,3)}}, (2, 3), QQ) | |
assert A.rref() == (A_rref, [0, 1]) | |
def test_SDM_particular(): | |
A = SDM({0:{0:QQ(1)}}, (2, 2), QQ) | |
Apart = SDM.zeros((1, 2), QQ) | |
assert A.particular() == Apart | |
def test_SDM_is_zero_matrix(): | |
A = SDM({0: {0: QQ(1)}}, (2, 2), QQ) | |
Azero = SDM.zeros((1, 2), QQ) | |
assert A.is_zero_matrix() is False | |
assert Azero.is_zero_matrix() is True | |
def test_SDM_is_upper(): | |
A = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)}, | |
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)}, | |
2: {2: QQ(8), 3: QQ(9)}}, (3, 4), QQ) | |
B = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)}, | |
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)}, | |
2: {1: QQ(7), 2: QQ(8), 3: QQ(9)}}, (3, 4), QQ) | |
assert A.is_upper() is True | |
assert B.is_upper() is False | |
def test_SDM_is_lower(): | |
A = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)}, | |
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)}, | |
2: {2: QQ(8), 3: QQ(9)}}, (3, 4), QQ | |
).transpose() | |
B = SDM({0: {0: QQ(1), 1: QQ(2), 2: QQ(3), 3: QQ(4)}, | |
1: {1: QQ(5), 2: QQ(6), 3: QQ(7)}, | |
2: {1: QQ(7), 2: QQ(8), 3: QQ(9)}}, (3, 4), QQ | |
).transpose() | |
assert A.is_lower() is True | |
assert B.is_lower() is False | |