Spaces:
Running
Running
# | |
# test_linsolve.py | |
# | |
# Test the internal implementation of linsolve. | |
# | |
from sympy.testing.pytest import raises | |
from sympy.core.numbers import I | |
from sympy.core.relational import Eq | |
from sympy.core.singleton import S | |
from sympy.abc import x, y, z | |
from sympy.polys.matrices.linsolve import _linsolve | |
from sympy.polys.solvers import PolyNonlinearError | |
def test__linsolve(): | |
assert _linsolve([], [x]) == {x:x} | |
assert _linsolve([S.Zero], [x]) == {x:x} | |
assert _linsolve([x-1,x-2], [x]) is None | |
assert _linsolve([x-1], [x]) == {x:1} | |
assert _linsolve([x-1, y], [x, y]) == {x:1, y:S.Zero} | |
assert _linsolve([2*I], [x]) is None | |
raises(PolyNonlinearError, lambda: _linsolve([x*(1 + x)], [x])) | |
def test__linsolve_float(): | |
# This should give the exact answer: | |
eqs = [ | |
y - x, | |
y - 0.0216 * x | |
] | |
sol = {x:0.0, y:0.0} | |
assert _linsolve(eqs, (x, y)) == sol | |
# Other cases should be close to eps | |
def all_close(sol1, sol2, eps=1e-15): | |
close = lambda a, b: abs(a - b) < eps | |
assert sol1.keys() == sol2.keys() | |
return all(close(sol1[s], sol2[s]) for s in sol1) | |
eqs = [ | |
0.8*x + 0.8*z + 0.2, | |
0.9*x + 0.7*y + 0.2*z + 0.9, | |
0.7*x + 0.2*y + 0.2*z + 0.5 | |
] | |
sol_exact = {x:-29/42, y:-11/21, z:37/84} | |
sol_linsolve = _linsolve(eqs, [x,y,z]) | |
assert all_close(sol_exact, sol_linsolve) | |
eqs = [ | |
0.9*x + 0.3*y + 0.4*z + 0.6, | |
0.6*x + 0.9*y + 0.1*z + 0.7, | |
0.4*x + 0.6*y + 0.9*z + 0.5 | |
] | |
sol_exact = {x:-88/175, y:-46/105, z:-1/25} | |
sol_linsolve = _linsolve(eqs, [x,y,z]) | |
assert all_close(sol_exact, sol_linsolve) | |
eqs = [ | |
0.4*x + 0.3*y + 0.6*z + 0.7, | |
0.4*x + 0.3*y + 0.9*z + 0.9, | |
0.7*x + 0.9*y, | |
] | |
sol_exact = {x:-9/5, y:7/5, z:-2/3} | |
sol_linsolve = _linsolve(eqs, [x,y,z]) | |
assert all_close(sol_exact, sol_linsolve) | |
eqs = [ | |
x*(0.7 + 0.6*I) + y*(0.4 + 0.7*I) + z*(0.9 + 0.1*I) + 0.5, | |
0.2*I*x + 0.2*I*y + z*(0.9 + 0.2*I) + 0.1, | |
x*(0.9 + 0.7*I) + y*(0.9 + 0.7*I) + z*(0.9 + 0.4*I) + 0.4, | |
] | |
sol_exact = { | |
x:-6157/7995 - 411/5330*I, | |
y:8519/15990 + 1784/7995*I, | |
z:-34/533 + 107/1599*I, | |
} | |
sol_linsolve = _linsolve(eqs, [x,y,z]) | |
assert all_close(sol_exact, sol_linsolve) | |
# XXX: This system for x and y over RR(z) is problematic. | |
# | |
# eqs = [ | |
# x*(0.2*z + 0.9) + y*(0.5*z + 0.8) + 0.6, | |
# 0.1*x*z + y*(0.1*z + 0.6) + 0.9, | |
# ] | |
# | |
# linsolve(eqs, [x, y]) | |
# The solution for x comes out as | |
# | |
# -3.9e-5*z**2 - 3.6e-5*z - 8.67361737988404e-20 | |
# x = ---------------------------------------------- | |
# 3.0e-6*z**3 - 1.3e-5*z**2 - 5.4e-5*z | |
# | |
# The 8e-20 in the numerator should be zero which would allow z to cancel | |
# from top and bottom. It should be possible to avoid this somehow because | |
# the inverse of the matrix only has a quadratic factor (the determinant) | |
# in the denominator. | |
def test__linsolve_deprecated(): | |
raises(PolyNonlinearError, lambda: | |
_linsolve([Eq(x**2, x**2 + y)], [x, y])) | |
raises(PolyNonlinearError, lambda: | |
_linsolve([(x + y)**2 - x**2], [x])) | |
raises(PolyNonlinearError, lambda: | |
_linsolve([Eq((x + y)**2, x**2)], [x])) | |