Spaces:
Running
Running
'''Functions returning normal forms of matrices''' | |
from collections import defaultdict | |
from .domainmatrix import DomainMatrix | |
from .exceptions import DMDomainError, DMShapeError | |
from sympy.ntheory.modular import symmetric_residue | |
from sympy.polys.domains import QQ, ZZ | |
# TODO (future work): | |
# There are faster algorithms for Smith and Hermite normal forms, which | |
# we should implement. See e.g. the Kannan-Bachem algorithm: | |
# <https://www.researchgate.net/publication/220617516_Polynomial_Algorithms_for_Computing_the_Smith_and_Hermite_Normal_Forms_of_an_Integer_Matrix> | |
def smith_normal_form(m): | |
''' | |
Return the Smith Normal Form of a matrix `m` over the ring `domain`. | |
This will only work if the ring is a principal ideal domain. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.polys.matrices.normalforms import smith_normal_form | |
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], | |
... [ZZ(3), ZZ(9), ZZ(6)], | |
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) | |
>>> print(smith_normal_form(m).to_Matrix()) | |
Matrix([[1, 0, 0], [0, 10, 0], [0, 0, -30]]) | |
''' | |
invs = invariant_factors(m) | |
smf = DomainMatrix.diag(invs, m.domain, m.shape) | |
return smf | |
def add_columns(m, i, j, a, b, c, d): | |
# replace m[:, i] by a*m[:, i] + b*m[:, j] | |
# and m[:, j] by c*m[:, i] + d*m[:, j] | |
for k in range(len(m)): | |
e = m[k][i] | |
m[k][i] = a*e + b*m[k][j] | |
m[k][j] = c*e + d*m[k][j] | |
def invariant_factors(m): | |
''' | |
Return the tuple of abelian invariants for a matrix `m` | |
(as in the Smith-Normal form) | |
References | |
========== | |
[1] https://en.wikipedia.org/wiki/Smith_normal_form#Algorithm | |
[2] https://web.archive.org/web/20200331143852/https://sierra.nmsu.edu/morandi/notes/SmithNormalForm.pdf | |
''' | |
domain = m.domain | |
if not domain.is_PID: | |
msg = "The matrix entries must be over a principal ideal domain" | |
raise ValueError(msg) | |
if 0 in m.shape: | |
return () | |
rows, cols = shape = m.shape | |
m = list(m.to_dense().rep.to_ddm()) | |
def add_rows(m, i, j, a, b, c, d): | |
# replace m[i, :] by a*m[i, :] + b*m[j, :] | |
# and m[j, :] by c*m[i, :] + d*m[j, :] | |
for k in range(cols): | |
e = m[i][k] | |
m[i][k] = a*e + b*m[j][k] | |
m[j][k] = c*e + d*m[j][k] | |
def clear_column(m): | |
# make m[1:, 0] zero by row and column operations | |
if m[0][0] == 0: | |
return m # pragma: nocover | |
pivot = m[0][0] | |
for j in range(1, rows): | |
if m[j][0] == 0: | |
continue | |
d, r = domain.div(m[j][0], pivot) | |
if r == 0: | |
add_rows(m, 0, j, 1, 0, -d, 1) | |
else: | |
a, b, g = domain.gcdex(pivot, m[j][0]) | |
d_0 = domain.div(m[j][0], g)[0] | |
d_j = domain.div(pivot, g)[0] | |
add_rows(m, 0, j, a, b, d_0, -d_j) | |
pivot = g | |
return m | |
def clear_row(m): | |
# make m[0, 1:] zero by row and column operations | |
if m[0][0] == 0: | |
return m # pragma: nocover | |
pivot = m[0][0] | |
for j in range(1, cols): | |
if m[0][j] == 0: | |
continue | |
d, r = domain.div(m[0][j], pivot) | |
if r == 0: | |
add_columns(m, 0, j, 1, 0, -d, 1) | |
else: | |
a, b, g = domain.gcdex(pivot, m[0][j]) | |
d_0 = domain.div(m[0][j], g)[0] | |
d_j = domain.div(pivot, g)[0] | |
add_columns(m, 0, j, a, b, d_0, -d_j) | |
pivot = g | |
return m | |
# permute the rows and columns until m[0,0] is non-zero if possible | |
ind = [i for i in range(rows) if m[i][0] != 0] | |
if ind and ind[0] != 0: | |
m[0], m[ind[0]] = m[ind[0]], m[0] | |
else: | |
ind = [j for j in range(cols) if m[0][j] != 0] | |
if ind and ind[0] != 0: | |
for row in m: | |
row[0], row[ind[0]] = row[ind[0]], row[0] | |
# make the first row and column except m[0,0] zero | |
while (any(m[0][i] != 0 for i in range(1,cols)) or | |
any(m[i][0] != 0 for i in range(1,rows))): | |
m = clear_column(m) | |
m = clear_row(m) | |
if 1 in shape: | |
invs = () | |
else: | |
lower_right = DomainMatrix([r[1:] for r in m[1:]], (rows-1, cols-1), domain) | |
invs = invariant_factors(lower_right) | |
if m[0][0]: | |
result = [m[0][0]] | |
result.extend(invs) | |
# in case m[0] doesn't divide the invariants of the rest of the matrix | |
for i in range(len(result)-1): | |
if result[i] and domain.div(result[i+1], result[i])[1] != 0: | |
g = domain.gcd(result[i+1], result[i]) | |
result[i+1] = domain.div(result[i], g)[0]*result[i+1] | |
result[i] = g | |
else: | |
break | |
else: | |
result = invs + (m[0][0],) | |
return tuple(result) | |
def _gcdex(a, b): | |
r""" | |
This supports the functions that compute Hermite Normal Form. | |
Explanation | |
=========== | |
Let x, y be the coefficients returned by the extended Euclidean | |
Algorithm, so that x*a + y*b = g. In the algorithms for computing HNF, | |
it is critical that x, y not only satisfy the condition of being small | |
in magnitude -- namely that |x| <= |b|/g, |y| <- |a|/g -- but also that | |
y == 0 when a | b. | |
""" | |
x, y, g = ZZ.gcdex(a, b) | |
if a != 0 and b % a == 0: | |
y = 0 | |
x = -1 if a < 0 else 1 | |
return x, y, g | |
def _hermite_normal_form(A): | |
r""" | |
Compute the Hermite Normal Form of DomainMatrix *A* over :ref:`ZZ`. | |
Parameters | |
========== | |
A : :py:class:`~.DomainMatrix` over domain :ref:`ZZ`. | |
Returns | |
======= | |
:py:class:`~.DomainMatrix` | |
The HNF of matrix *A*. | |
Raises | |
====== | |
DMDomainError | |
If the domain of the matrix is not :ref:`ZZ`. | |
References | |
========== | |
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* | |
(See Algorithm 2.4.5.) | |
""" | |
if not A.domain.is_ZZ: | |
raise DMDomainError('Matrix must be over domain ZZ.') | |
# We work one row at a time, starting from the bottom row, and working our | |
# way up. | |
m, n = A.shape | |
A = A.to_dense().rep.to_ddm().copy() | |
# Our goal is to put pivot entries in the rightmost columns. | |
# Invariant: Before processing each row, k should be the index of the | |
# leftmost column in which we have so far put a pivot. | |
k = n | |
for i in range(m - 1, -1, -1): | |
if k == 0: | |
# This case can arise when n < m and we've already found n pivots. | |
# We don't need to consider any more rows, because this is already | |
# the maximum possible number of pivots. | |
break | |
k -= 1 | |
# k now points to the column in which we want to put a pivot. | |
# We want zeros in all entries to the left of the pivot column. | |
for j in range(k - 1, -1, -1): | |
if A[i][j] != 0: | |
# Replace cols j, k by lin combs of these cols such that, in row i, | |
# col j has 0, while col k has the gcd of their row i entries. Note | |
# that this ensures a nonzero entry in col k. | |
u, v, d = _gcdex(A[i][k], A[i][j]) | |
r, s = A[i][k] // d, A[i][j] // d | |
add_columns(A, k, j, u, v, -s, r) | |
b = A[i][k] | |
# Do not want the pivot entry to be negative. | |
if b < 0: | |
add_columns(A, k, k, -1, 0, -1, 0) | |
b = -b | |
# The pivot entry will be 0 iff the row was 0 from the pivot col all the | |
# way to the left. In this case, we are still working on the same pivot | |
# col for the next row. Therefore: | |
if b == 0: | |
k += 1 | |
# If the pivot entry is nonzero, then we want to reduce all entries to its | |
# right in the sense of the division algorithm, i.e. make them all remainders | |
# w.r.t. the pivot as divisor. | |
else: | |
for j in range(k + 1, n): | |
q = A[i][j] // b | |
add_columns(A, j, k, 1, -q, 0, 1) | |
# Finally, the HNF consists of those columns of A in which we succeeded in making | |
# a nonzero pivot. | |
return DomainMatrix.from_rep(A.to_dfm_or_ddm())[:, k:] | |
def _hermite_normal_form_modulo_D(A, D): | |
r""" | |
Perform the mod *D* Hermite Normal Form reduction algorithm on | |
:py:class:`~.DomainMatrix` *A*. | |
Explanation | |
=========== | |
If *A* is an $m \times n$ matrix of rank $m$, having Hermite Normal Form | |
$W$, and if *D* is any positive integer known in advance to be a multiple | |
of $\det(W)$, then the HNF of *A* can be computed by an algorithm that | |
works mod *D* in order to prevent coefficient explosion. | |
Parameters | |
========== | |
A : :py:class:`~.DomainMatrix` over :ref:`ZZ` | |
$m \times n$ matrix, having rank $m$. | |
D : :ref:`ZZ` | |
Positive integer, known to be a multiple of the determinant of the | |
HNF of *A*. | |
Returns | |
======= | |
:py:class:`~.DomainMatrix` | |
The HNF of matrix *A*. | |
Raises | |
====== | |
DMDomainError | |
If the domain of the matrix is not :ref:`ZZ`, or | |
if *D* is given but is not in :ref:`ZZ`. | |
DMShapeError | |
If the matrix has more rows than columns. | |
References | |
========== | |
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* | |
(See Algorithm 2.4.8.) | |
""" | |
if not A.domain.is_ZZ: | |
raise DMDomainError('Matrix must be over domain ZZ.') | |
if not ZZ.of_type(D) or D < 1: | |
raise DMDomainError('Modulus D must be positive element of domain ZZ.') | |
def add_columns_mod_R(m, R, i, j, a, b, c, d): | |
# replace m[:, i] by (a*m[:, i] + b*m[:, j]) % R | |
# and m[:, j] by (c*m[:, i] + d*m[:, j]) % R | |
for k in range(len(m)): | |
e = m[k][i] | |
m[k][i] = symmetric_residue((a * e + b * m[k][j]) % R, R) | |
m[k][j] = symmetric_residue((c * e + d * m[k][j]) % R, R) | |
W = defaultdict(dict) | |
m, n = A.shape | |
if n < m: | |
raise DMShapeError('Matrix must have at least as many columns as rows.') | |
A = A.to_dense().rep.to_ddm().copy() | |
k = n | |
R = D | |
for i in range(m - 1, -1, -1): | |
k -= 1 | |
for j in range(k - 1, -1, -1): | |
if A[i][j] != 0: | |
u, v, d = _gcdex(A[i][k], A[i][j]) | |
r, s = A[i][k] // d, A[i][j] // d | |
add_columns_mod_R(A, R, k, j, u, v, -s, r) | |
b = A[i][k] | |
if b == 0: | |
A[i][k] = b = R | |
u, v, d = _gcdex(b, R) | |
for ii in range(m): | |
W[ii][i] = u*A[ii][k] % R | |
if W[i][i] == 0: | |
W[i][i] = R | |
for j in range(i + 1, m): | |
q = W[i][j] // W[i][i] | |
add_columns(W, j, i, 1, -q, 0, 1) | |
R //= d | |
return DomainMatrix(W, (m, m), ZZ).to_dense() | |
def hermite_normal_form(A, *, D=None, check_rank=False): | |
r""" | |
Compute the Hermite Normal Form of :py:class:`~.DomainMatrix` *A* over | |
:ref:`ZZ`. | |
Examples | |
======== | |
>>> from sympy import ZZ | |
>>> from sympy.polys.matrices import DomainMatrix | |
>>> from sympy.polys.matrices.normalforms import hermite_normal_form | |
>>> m = DomainMatrix([[ZZ(12), ZZ(6), ZZ(4)], | |
... [ZZ(3), ZZ(9), ZZ(6)], | |
... [ZZ(2), ZZ(16), ZZ(14)]], (3, 3), ZZ) | |
>>> print(hermite_normal_form(m).to_Matrix()) | |
Matrix([[10, 0, 2], [0, 15, 3], [0, 0, 2]]) | |
Parameters | |
========== | |
A : $m \times n$ ``DomainMatrix`` over :ref:`ZZ`. | |
D : :ref:`ZZ`, optional | |
Let $W$ be the HNF of *A*. If known in advance, a positive integer *D* | |
being any multiple of $\det(W)$ may be provided. In this case, if *A* | |
also has rank $m$, then we may use an alternative algorithm that works | |
mod *D* in order to prevent coefficient explosion. | |
check_rank : boolean, optional (default=False) | |
The basic assumption is that, if you pass a value for *D*, then | |
you already believe that *A* has rank $m$, so we do not waste time | |
checking it for you. If you do want this to be checked (and the | |
ordinary, non-modulo *D* algorithm to be used if the check fails), then | |
set *check_rank* to ``True``. | |
Returns | |
======= | |
:py:class:`~.DomainMatrix` | |
The HNF of matrix *A*. | |
Raises | |
====== | |
DMDomainError | |
If the domain of the matrix is not :ref:`ZZ`, or | |
if *D* is given but is not in :ref:`ZZ`. | |
DMShapeError | |
If the mod *D* algorithm is used but the matrix has more rows than | |
columns. | |
References | |
========== | |
.. [1] Cohen, H. *A Course in Computational Algebraic Number Theory.* | |
(See Algorithms 2.4.5 and 2.4.8.) | |
""" | |
if not A.domain.is_ZZ: | |
raise DMDomainError('Matrix must be over domain ZZ.') | |
if D is not None and (not check_rank or A.convert_to(QQ).rank() == A.shape[0]): | |
return _hermite_normal_form_modulo_D(A, D) | |
else: | |
return _hermite_normal_form(A) | |