Spaces:
Running
Running
"""Heuristic polynomial GCD algorithm (HEUGCD). """ | |
from .polyerrors import HeuristicGCDFailed | |
HEU_GCD_MAX = 6 | |
def heugcd(f, g): | |
""" | |
Heuristic polynomial GCD in ``Z[X]``. | |
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns | |
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg`` | |
such that:: | |
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h) | |
The algorithm is purely heuristic which means it may fail to compute | |
the GCD. This will be signaled by raising an exception. In this case | |
you will need to switch to another GCD method. | |
The algorithm computes the polynomial GCD by evaluating polynomials | |
``f`` and ``g`` at certain points and computing (fast) integer GCD | |
of those evaluations. The polynomial GCD is recovered from the integer | |
image by interpolation. The evaluation process reduces f and g variable | |
by variable into a large integer. The final step is to verify if the | |
interpolated polynomial is the correct GCD. This gives cofactors of | |
the input polynomials as a side effect. | |
Examples | |
======== | |
>>> from sympy.polys.heuristicgcd import heugcd | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y, = ring("x,y", ZZ) | |
>>> f = x**2 + 2*x*y + y**2 | |
>>> g = x**2 + x*y | |
>>> h, cff, cfg = heugcd(f, g) | |
>>> h, cff, cfg | |
(x + y, x + y, x) | |
>>> cff*h == f | |
True | |
>>> cfg*h == g | |
True | |
References | |
========== | |
.. [1] [Liao95]_ | |
""" | |
assert f.ring == g.ring and f.ring.domain.is_ZZ | |
ring = f.ring | |
x0 = ring.gens[0] | |
domain = ring.domain | |
gcd, f, g = f.extract_ground(g) | |
f_norm = f.max_norm() | |
g_norm = g.max_norm() | |
B = domain(2*min(f_norm, g_norm) + 29) | |
x = max(min(B, 99*domain.sqrt(B)), | |
2*min(f_norm // abs(f.LC), | |
g_norm // abs(g.LC)) + 4) | |
for i in range(0, HEU_GCD_MAX): | |
ff = f.evaluate(x0, x) | |
gg = g.evaluate(x0, x) | |
if ff and gg: | |
if ring.ngens == 1: | |
h, cff, cfg = domain.cofactors(ff, gg) | |
else: | |
h, cff, cfg = heugcd(ff, gg) | |
h = _gcd_interpolate(h, x, ring) | |
h = h.primitive()[1] | |
cff_, r = f.div(h) | |
if not r: | |
cfg_, r = g.div(h) | |
if not r: | |
h = h.mul_ground(gcd) | |
return h, cff_, cfg_ | |
cff = _gcd_interpolate(cff, x, ring) | |
h, r = f.div(cff) | |
if not r: | |
cfg_, r = g.div(h) | |
if not r: | |
h = h.mul_ground(gcd) | |
return h, cff, cfg_ | |
cfg = _gcd_interpolate(cfg, x, ring) | |
h, r = g.div(cfg) | |
if not r: | |
cff_, r = f.div(h) | |
if not r: | |
h = h.mul_ground(gcd) | |
return h, cff_, cfg | |
x = 73794*x * domain.sqrt(domain.sqrt(x)) // 27011 | |
raise HeuristicGCDFailed('no luck') | |
def _gcd_interpolate(h, x, ring): | |
"""Interpolate polynomial GCD from integer GCD. """ | |
f, i = ring.zero, 0 | |
# TODO: don't expose poly repr implementation details | |
if ring.ngens == 1: | |
while h: | |
g = h % x | |
if g > x // 2: g -= x | |
h = (h - g) // x | |
# f += X**i*g | |
if g: | |
f[(i,)] = g | |
i += 1 | |
else: | |
while h: | |
g = h.trunc_ground(x) | |
h = (h - g).quo_ground(x) | |
# f += X**i*g | |
if g: | |
for monom, coeff in g.iterterms(): | |
f[(i,) + monom] = coeff | |
i += 1 | |
if f.LC < 0: | |
return -f | |
else: | |
return f | |