Spaces:
Running
Running
"""Dense univariate polynomials with coefficients in Galois fields. """ | |
from math import ceil as _ceil, sqrt as _sqrt, prod | |
from sympy.core.random import uniform, _randint | |
from sympy.external.gmpy import SYMPY_INTS, MPZ, invert | |
from sympy.polys.polyconfig import query | |
from sympy.polys.polyerrors import ExactQuotientFailed | |
from sympy.polys.polyutils import _sort_factors | |
def gf_crt(U, M, K=None): | |
""" | |
Chinese Remainder Theorem. | |
Given a set of integer residues ``u_0,...,u_n`` and a set of | |
co-prime integer moduli ``m_0,...,m_n``, returns an integer | |
``u``, such that ``u = u_i mod m_i`` for ``i = ``0,...,n``. | |
Examples | |
======== | |
Consider a set of residues ``U = [49, 76, 65]`` | |
and a set of moduli ``M = [99, 97, 95]``. Then we have:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_crt | |
>>> gf_crt([49, 76, 65], [99, 97, 95], ZZ) | |
639985 | |
This is the correct result because:: | |
>>> [639985 % m for m in [99, 97, 95]] | |
[49, 76, 65] | |
Note: this is a low-level routine with no error checking. | |
See Also | |
======== | |
sympy.ntheory.modular.crt : a higher level crt routine | |
sympy.ntheory.modular.solve_congruence | |
""" | |
p = prod(M, start=K.one) | |
v = K.zero | |
for u, m in zip(U, M): | |
e = p // m | |
s, _, _ = K.gcdex(e, m) | |
v += e*(u*s % m) | |
return v % p | |
def gf_crt1(M, K): | |
""" | |
First part of the Chinese Remainder Theorem. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_crt, gf_crt1, gf_crt2 | |
>>> U = [49, 76, 65] | |
>>> M = [99, 97, 95] | |
The following two codes have the same result. | |
>>> gf_crt(U, M, ZZ) | |
639985 | |
>>> p, E, S = gf_crt1(M, ZZ) | |
>>> gf_crt2(U, M, p, E, S, ZZ) | |
639985 | |
However, it is faster when we want to fix ``M`` and | |
compute for multiple U, i.e. the following cases: | |
>>> p, E, S = gf_crt1(M, ZZ) | |
>>> Us = [[49, 76, 65], [23, 42, 67]] | |
>>> for U in Us: | |
... print(gf_crt2(U, M, p, E, S, ZZ)) | |
639985 | |
236237 | |
See Also | |
======== | |
sympy.ntheory.modular.crt1 : a higher level crt routine | |
sympy.polys.galoistools.gf_crt | |
sympy.polys.galoistools.gf_crt2 | |
""" | |
E, S = [], [] | |
p = prod(M, start=K.one) | |
for m in M: | |
E.append(p // m) | |
S.append(K.gcdex(E[-1], m)[0] % m) | |
return p, E, S | |
def gf_crt2(U, M, p, E, S, K): | |
""" | |
Second part of the Chinese Remainder Theorem. | |
See ``gf_crt1`` for usage. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_crt2 | |
>>> U = [49, 76, 65] | |
>>> M = [99, 97, 95] | |
>>> p = 912285 | |
>>> E = [9215, 9405, 9603] | |
>>> S = [62, 24, 12] | |
>>> gf_crt2(U, M, p, E, S, ZZ) | |
639985 | |
See Also | |
======== | |
sympy.ntheory.modular.crt2 : a higher level crt routine | |
sympy.polys.galoistools.gf_crt | |
sympy.polys.galoistools.gf_crt1 | |
""" | |
v = K.zero | |
for u, m, e, s in zip(U, M, E, S): | |
v += e*(u*s % m) | |
return v % p | |
def gf_int(a, p): | |
""" | |
Coerce ``a mod p`` to an integer in the range ``[-p/2, p/2]``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_int | |
>>> gf_int(2, 7) | |
2 | |
>>> gf_int(5, 7) | |
-2 | |
""" | |
if a <= p // 2: | |
return a | |
else: | |
return a - p | |
def gf_degree(f): | |
""" | |
Return the leading degree of ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_degree | |
>>> gf_degree([1, 1, 2, 0]) | |
3 | |
>>> gf_degree([]) | |
-1 | |
""" | |
return len(f) - 1 | |
def gf_LC(f, K): | |
""" | |
Return the leading coefficient of ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_LC | |
>>> gf_LC([3, 0, 1], ZZ) | |
3 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return f[0] | |
def gf_TC(f, K): | |
""" | |
Return the trailing coefficient of ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_TC | |
>>> gf_TC([3, 0, 1], ZZ) | |
1 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return f[-1] | |
def gf_strip(f): | |
""" | |
Remove leading zeros from ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_strip | |
>>> gf_strip([0, 0, 0, 3, 0, 1]) | |
[3, 0, 1] | |
""" | |
if not f or f[0]: | |
return f | |
k = 0 | |
for coeff in f: | |
if coeff: | |
break | |
else: | |
k += 1 | |
return f[k:] | |
def gf_trunc(f, p): | |
""" | |
Reduce all coefficients modulo ``p``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_trunc | |
>>> gf_trunc([7, -2, 3], 5) | |
[2, 3, 3] | |
""" | |
return gf_strip([ a % p for a in f ]) | |
def gf_normal(f, p, K): | |
""" | |
Normalize all coefficients in ``K``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_normal | |
>>> gf_normal([5, 10, 21, -3], 5, ZZ) | |
[1, 2] | |
""" | |
return gf_trunc(list(map(K, f)), p) | |
def gf_from_dict(f, p, K): | |
""" | |
Create a ``GF(p)[x]`` polynomial from a dict. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_from_dict | |
>>> gf_from_dict({10: ZZ(4), 4: ZZ(33), 0: ZZ(-1)}, 5, ZZ) | |
[4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4] | |
""" | |
n, h = max(f.keys()), [] | |
if isinstance(n, SYMPY_INTS): | |
for k in range(n, -1, -1): | |
h.append(f.get(k, K.zero) % p) | |
else: | |
(n,) = n | |
for k in range(n, -1, -1): | |
h.append(f.get((k,), K.zero) % p) | |
return gf_trunc(h, p) | |
def gf_to_dict(f, p, symmetric=True): | |
""" | |
Convert a ``GF(p)[x]`` polynomial to a dict. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_to_dict | |
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5) | |
{0: -1, 4: -2, 10: -1} | |
>>> gf_to_dict([4, 0, 0, 0, 0, 0, 3, 0, 0, 0, 4], 5, symmetric=False) | |
{0: 4, 4: 3, 10: 4} | |
""" | |
n, result = gf_degree(f), {} | |
for k in range(0, n + 1): | |
if symmetric: | |
a = gf_int(f[n - k], p) | |
else: | |
a = f[n - k] | |
if a: | |
result[k] = a | |
return result | |
def gf_from_int_poly(f, p): | |
""" | |
Create a ``GF(p)[x]`` polynomial from ``Z[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_from_int_poly | |
>>> gf_from_int_poly([7, -2, 3], 5) | |
[2, 3, 3] | |
""" | |
return gf_trunc(f, p) | |
def gf_to_int_poly(f, p, symmetric=True): | |
""" | |
Convert a ``GF(p)[x]`` polynomial to ``Z[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_to_int_poly | |
>>> gf_to_int_poly([2, 3, 3], 5) | |
[2, -2, -2] | |
>>> gf_to_int_poly([2, 3, 3], 5, symmetric=False) | |
[2, 3, 3] | |
""" | |
if symmetric: | |
return [ gf_int(c, p) for c in f ] | |
else: | |
return f | |
def gf_neg(f, p, K): | |
""" | |
Negate a polynomial in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_neg | |
>>> gf_neg([3, 2, 1, 0], 5, ZZ) | |
[2, 3, 4, 0] | |
""" | |
return [ -coeff % p for coeff in f ] | |
def gf_add_ground(f, a, p, K): | |
""" | |
Compute ``f + a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_add_ground | |
>>> gf_add_ground([3, 2, 4], 2, 5, ZZ) | |
[3, 2, 1] | |
""" | |
if not f: | |
a = a % p | |
else: | |
a = (f[-1] + a) % p | |
if len(f) > 1: | |
return f[:-1] + [a] | |
if not a: | |
return [] | |
else: | |
return [a] | |
def gf_sub_ground(f, a, p, K): | |
""" | |
Compute ``f - a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sub_ground | |
>>> gf_sub_ground([3, 2, 4], 2, 5, ZZ) | |
[3, 2, 2] | |
""" | |
if not f: | |
a = -a % p | |
else: | |
a = (f[-1] - a) % p | |
if len(f) > 1: | |
return f[:-1] + [a] | |
if not a: | |
return [] | |
else: | |
return [a] | |
def gf_mul_ground(f, a, p, K): | |
""" | |
Compute ``f * a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_mul_ground | |
>>> gf_mul_ground([3, 2, 4], 2, 5, ZZ) | |
[1, 4, 3] | |
""" | |
if not a: | |
return [] | |
else: | |
return [ (a*b) % p for b in f ] | |
def gf_quo_ground(f, a, p, K): | |
""" | |
Compute ``f/a`` where ``f`` in ``GF(p)[x]`` and ``a`` in ``GF(p)``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_quo_ground | |
>>> gf_quo_ground(ZZ.map([3, 2, 4]), ZZ(2), 5, ZZ) | |
[4, 1, 2] | |
""" | |
return gf_mul_ground(f, K.invert(a, p), p, K) | |
def gf_add(f, g, p, K): | |
""" | |
Add polynomials in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_add | |
>>> gf_add([3, 2, 4], [2, 2, 2], 5, ZZ) | |
[4, 1] | |
""" | |
if not f: | |
return g | |
if not g: | |
return f | |
df = gf_degree(f) | |
dg = gf_degree(g) | |
if df == dg: | |
return gf_strip([ (a + b) % p for a, b in zip(f, g) ]) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = g[:k], g[k:] | |
return h + [ (a + b) % p for a, b in zip(f, g) ] | |
def gf_sub(f, g, p, K): | |
""" | |
Subtract polynomials in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sub | |
>>> gf_sub([3, 2, 4], [2, 2, 2], 5, ZZ) | |
[1, 0, 2] | |
""" | |
if not g: | |
return f | |
if not f: | |
return gf_neg(g, p, K) | |
df = gf_degree(f) | |
dg = gf_degree(g) | |
if df == dg: | |
return gf_strip([ (a - b) % p for a, b in zip(f, g) ]) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = gf_neg(g[:k], p, K), g[k:] | |
return h + [ (a - b) % p for a, b in zip(f, g) ] | |
def gf_mul(f, g, p, K): | |
""" | |
Multiply polynomials in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_mul | |
>>> gf_mul([3, 2, 4], [2, 2, 2], 5, ZZ) | |
[1, 0, 3, 2, 3] | |
""" | |
df = gf_degree(f) | |
dg = gf_degree(g) | |
dh = df + dg | |
h = [0]*(dh + 1) | |
for i in range(0, dh + 1): | |
coeff = K.zero | |
for j in range(max(0, i - dg), min(i, df) + 1): | |
coeff += f[j]*g[i - j] | |
h[i] = coeff % p | |
return gf_strip(h) | |
def gf_sqr(f, p, K): | |
""" | |
Square polynomials in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sqr | |
>>> gf_sqr([3, 2, 4], 5, ZZ) | |
[4, 2, 3, 1, 1] | |
""" | |
df = gf_degree(f) | |
dh = 2*df | |
h = [0]*(dh + 1) | |
for i in range(0, dh + 1): | |
coeff = K.zero | |
jmin = max(0, i - df) | |
jmax = min(i, df) | |
n = jmax - jmin + 1 | |
jmax = jmin + n // 2 - 1 | |
for j in range(jmin, jmax + 1): | |
coeff += f[j]*f[i - j] | |
coeff += coeff | |
if n & 1: | |
elem = f[jmax + 1] | |
coeff += elem**2 | |
h[i] = coeff % p | |
return gf_strip(h) | |
def gf_add_mul(f, g, h, p, K): | |
""" | |
Returns ``f + g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_add_mul | |
>>> gf_add_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ) | |
[2, 3, 2, 2] | |
""" | |
return gf_add(f, gf_mul(g, h, p, K), p, K) | |
def gf_sub_mul(f, g, h, p, K): | |
""" | |
Compute ``f - g*h`` where ``f``, ``g``, ``h`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sub_mul | |
>>> gf_sub_mul([3, 2, 4], [2, 2, 2], [1, 4], 5, ZZ) | |
[3, 3, 2, 1] | |
""" | |
return gf_sub(f, gf_mul(g, h, p, K), p, K) | |
def gf_expand(F, p, K): | |
""" | |
Expand results of :func:`~.factor` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_expand | |
>>> gf_expand([([3, 2, 4], 1), ([2, 2], 2), ([3, 1], 3)], 5, ZZ) | |
[4, 3, 0, 3, 0, 1, 4, 1] | |
""" | |
if isinstance(F, tuple): | |
lc, F = F | |
else: | |
lc = K.one | |
g = [lc] | |
for f, k in F: | |
f = gf_pow(f, k, p, K) | |
g = gf_mul(g, f, p, K) | |
return g | |
def gf_div(f, g, p, K): | |
""" | |
Division with remainder in ``GF(p)[x]``. | |
Given univariate polynomials ``f`` and ``g`` with coefficients in a | |
finite field with ``p`` elements, returns polynomials ``q`` and ``r`` | |
(quotient and remainder) such that ``f = q*g + r``. | |
Consider polynomials ``x**3 + x + 1`` and ``x**2 + x`` in GF(2):: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_div, gf_add_mul | |
>>> gf_div(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) | |
([1, 1], [1]) | |
As result we obtained quotient ``x + 1`` and remainder ``1``, thus:: | |
>>> gf_add_mul(ZZ.map([1]), ZZ.map([1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) | |
[1, 0, 1, 1] | |
References | |
========== | |
.. [1] [Monagan93]_ | |
.. [2] [Gathen99]_ | |
""" | |
df = gf_degree(f) | |
dg = gf_degree(g) | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return [], f | |
inv = K.invert(g[0], p) | |
h, dq, dr = list(f), df - dg, dg - 1 | |
for i in range(0, df + 1): | |
coeff = h[i] | |
for j in range(max(0, dg - i), min(df - i, dr) + 1): | |
coeff -= h[i + j - dg] * g[dg - j] | |
if i <= dq: | |
coeff *= inv | |
h[i] = coeff % p | |
return h[:dq + 1], gf_strip(h[dq + 1:]) | |
def gf_rem(f, g, p, K): | |
""" | |
Compute polynomial remainder in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_rem | |
>>> gf_rem(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) | |
[1] | |
""" | |
return gf_div(f, g, p, K)[1] | |
def gf_quo(f, g, p, K): | |
""" | |
Compute exact quotient in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_quo | |
>>> gf_quo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) | |
[1, 1] | |
>>> gf_quo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ) | |
[3, 2, 4] | |
""" | |
df = gf_degree(f) | |
dg = gf_degree(g) | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return [] | |
inv = K.invert(g[0], p) | |
h, dq, dr = f[:], df - dg, dg - 1 | |
for i in range(0, dq + 1): | |
coeff = h[i] | |
for j in range(max(0, dg - i), min(df - i, dr) + 1): | |
coeff -= h[i + j - dg] * g[dg - j] | |
h[i] = (coeff * inv) % p | |
return h[:dq + 1] | |
def gf_exquo(f, g, p, K): | |
""" | |
Compute polynomial quotient in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_exquo | |
>>> gf_exquo(ZZ.map([1, 0, 3, 2, 3]), ZZ.map([2, 2, 2]), 5, ZZ) | |
[3, 2, 4] | |
>>> gf_exquo(ZZ.map([1, 0, 1, 1]), ZZ.map([1, 1, 0]), 2, ZZ) | |
Traceback (most recent call last): | |
... | |
ExactQuotientFailed: [1, 1, 0] does not divide [1, 0, 1, 1] | |
""" | |
q, r = gf_div(f, g, p, K) | |
if not r: | |
return q | |
else: | |
raise ExactQuotientFailed(f, g) | |
def gf_lshift(f, n, K): | |
""" | |
Efficiently multiply ``f`` by ``x**n``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_lshift | |
>>> gf_lshift([3, 2, 4], 4, ZZ) | |
[3, 2, 4, 0, 0, 0, 0] | |
""" | |
if not f: | |
return f | |
else: | |
return f + [K.zero]*n | |
def gf_rshift(f, n, K): | |
""" | |
Efficiently divide ``f`` by ``x**n``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_rshift | |
>>> gf_rshift([1, 2, 3, 4, 0], 3, ZZ) | |
([1, 2], [3, 4, 0]) | |
""" | |
if not n: | |
return f, [] | |
else: | |
return f[:-n], f[-n:] | |
def gf_pow(f, n, p, K): | |
""" | |
Compute ``f**n`` in ``GF(p)[x]`` using repeated squaring. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_pow | |
>>> gf_pow([3, 2, 4], 3, 5, ZZ) | |
[2, 4, 4, 2, 2, 1, 4] | |
""" | |
if not n: | |
return [K.one] | |
elif n == 1: | |
return f | |
elif n == 2: | |
return gf_sqr(f, p, K) | |
h = [K.one] | |
while True: | |
if n & 1: | |
h = gf_mul(h, f, p, K) | |
n -= 1 | |
n >>= 1 | |
if not n: | |
break | |
f = gf_sqr(f, p, K) | |
return h | |
def gf_frobenius_monomial_base(g, p, K): | |
""" | |
return the list of ``x**(i*p) mod g in Z_p`` for ``i = 0, .., n - 1`` | |
where ``n = gf_degree(g)`` | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base | |
>>> g = ZZ.map([1, 0, 2, 1]) | |
>>> gf_frobenius_monomial_base(g, 5, ZZ) | |
[[1], [4, 4, 2], [1, 2]] | |
""" | |
n = gf_degree(g) | |
if n == 0: | |
return [] | |
b = [0]*n | |
b[0] = [1] | |
if p < n: | |
for i in range(1, n): | |
mon = gf_lshift(b[i - 1], p, K) | |
b[i] = gf_rem(mon, g, p, K) | |
elif n > 1: | |
b[1] = gf_pow_mod([K.one, K.zero], p, g, p, K) | |
for i in range(2, n): | |
b[i] = gf_mul(b[i - 1], b[1], p, K) | |
b[i] = gf_rem(b[i], g, p, K) | |
return b | |
def gf_frobenius_map(f, g, b, p, K): | |
""" | |
compute gf_pow_mod(f, p, g, p, K) using the Frobenius map | |
Parameters | |
========== | |
f, g : polynomials in ``GF(p)[x]`` | |
b : frobenius monomial base | |
p : prime number | |
K : domain | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_frobenius_monomial_base, gf_frobenius_map | |
>>> f = ZZ.map([2, 1, 0, 1]) | |
>>> g = ZZ.map([1, 0, 2, 1]) | |
>>> p = 5 | |
>>> b = gf_frobenius_monomial_base(g, p, ZZ) | |
>>> r = gf_frobenius_map(f, g, b, p, ZZ) | |
>>> gf_frobenius_map(f, g, b, p, ZZ) | |
[4, 0, 3] | |
""" | |
m = gf_degree(g) | |
if gf_degree(f) >= m: | |
f = gf_rem(f, g, p, K) | |
if not f: | |
return [] | |
n = gf_degree(f) | |
sf = [f[-1]] | |
for i in range(1, n + 1): | |
v = gf_mul_ground(b[i], f[n - i], p, K) | |
sf = gf_add(sf, v, p, K) | |
return sf | |
def _gf_pow_pnm1d2(f, n, g, b, p, K): | |
""" | |
utility function for ``gf_edf_zassenhaus`` | |
Compute ``f**((p**n - 1) // 2)`` in ``GF(p)[x]/(g)`` | |
``f**((p**n - 1) // 2) = (f*f**p*...*f**(p**n - 1))**((p - 1) // 2)`` | |
""" | |
f = gf_rem(f, g, p, K) | |
h = f | |
r = f | |
for i in range(1, n): | |
h = gf_frobenius_map(h, g, b, p, K) | |
r = gf_mul(r, h, p, K) | |
r = gf_rem(r, g, p, K) | |
res = gf_pow_mod(r, (p - 1)//2, g, p, K) | |
return res | |
def gf_pow_mod(f, n, g, p, K): | |
""" | |
Compute ``f**n`` in ``GF(p)[x]/(g)`` using repeated squaring. | |
Given polynomials ``f`` and ``g`` in ``GF(p)[x]`` and a non-negative | |
integer ``n``, efficiently computes ``f**n (mod g)`` i.e. the remainder | |
of ``f**n`` from division by ``g``, using the repeated squaring algorithm. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_pow_mod | |
>>> gf_pow_mod(ZZ.map([3, 2, 4]), 3, ZZ.map([1, 1]), 5, ZZ) | |
[] | |
References | |
========== | |
.. [1] [Gathen99]_ | |
""" | |
if not n: | |
return [K.one] | |
elif n == 1: | |
return gf_rem(f, g, p, K) | |
elif n == 2: | |
return gf_rem(gf_sqr(f, p, K), g, p, K) | |
h = [K.one] | |
while True: | |
if n & 1: | |
h = gf_mul(h, f, p, K) | |
h = gf_rem(h, g, p, K) | |
n -= 1 | |
n >>= 1 | |
if not n: | |
break | |
f = gf_sqr(f, p, K) | |
f = gf_rem(f, g, p, K) | |
return h | |
def gf_gcd(f, g, p, K): | |
""" | |
Euclidean Algorithm in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_gcd | |
>>> gf_gcd(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) | |
[1, 3] | |
""" | |
while g: | |
f, g = g, gf_rem(f, g, p, K) | |
return gf_monic(f, p, K)[1] | |
def gf_lcm(f, g, p, K): | |
""" | |
Compute polynomial LCM in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_lcm | |
>>> gf_lcm(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) | |
[1, 2, 0, 4] | |
""" | |
if not f or not g: | |
return [] | |
h = gf_quo(gf_mul(f, g, p, K), | |
gf_gcd(f, g, p, K), p, K) | |
return gf_monic(h, p, K)[1] | |
def gf_cofactors(f, g, p, K): | |
""" | |
Compute polynomial GCD and cofactors in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_cofactors | |
>>> gf_cofactors(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 3]), 5, ZZ) | |
([1, 3], [3, 3], [2, 1]) | |
""" | |
if not f and not g: | |
return ([], [], []) | |
h = gf_gcd(f, g, p, K) | |
return (h, gf_quo(f, h, p, K), | |
gf_quo(g, h, p, K)) | |
def gf_gcdex(f, g, p, K): | |
""" | |
Extended Euclidean Algorithm in ``GF(p)[x]``. | |
Given polynomials ``f`` and ``g`` in ``GF(p)[x]``, computes polynomials | |
``s``, ``t`` and ``h``, such that ``h = gcd(f, g)`` and ``s*f + t*g = h``. | |
The typical application of EEA is solving polynomial diophantine equations. | |
Consider polynomials ``f = (x + 7) (x + 1)``, ``g = (x + 7) (x**2 + 1)`` | |
in ``GF(11)[x]``. Application of Extended Euclidean Algorithm gives:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_gcdex, gf_mul, gf_add | |
>>> s, t, g = gf_gcdex(ZZ.map([1, 8, 7]), ZZ.map([1, 7, 1, 7]), 11, ZZ) | |
>>> s, t, g | |
([5, 6], [6], [1, 7]) | |
As result we obtained polynomials ``s = 5*x + 6`` and ``t = 6``, and | |
additionally ``gcd(f, g) = x + 7``. This is correct because:: | |
>>> S = gf_mul(s, ZZ.map([1, 8, 7]), 11, ZZ) | |
>>> T = gf_mul(t, ZZ.map([1, 7, 1, 7]), 11, ZZ) | |
>>> gf_add(S, T, 11, ZZ) == [1, 7] | |
True | |
References | |
========== | |
.. [1] [Gathen99]_ | |
""" | |
if not (f or g): | |
return [K.one], [], [] | |
p0, r0 = gf_monic(f, p, K) | |
p1, r1 = gf_monic(g, p, K) | |
if not f: | |
return [], [K.invert(p1, p)], r1 | |
if not g: | |
return [K.invert(p0, p)], [], r0 | |
s0, s1 = [K.invert(p0, p)], [] | |
t0, t1 = [], [K.invert(p1, p)] | |
while True: | |
Q, R = gf_div(r0, r1, p, K) | |
if not R: | |
break | |
(lc, r1), r0 = gf_monic(R, p, K), r1 | |
inv = K.invert(lc, p) | |
s = gf_sub_mul(s0, s1, Q, p, K) | |
t = gf_sub_mul(t0, t1, Q, p, K) | |
s1, s0 = gf_mul_ground(s, inv, p, K), s1 | |
t1, t0 = gf_mul_ground(t, inv, p, K), t1 | |
return s1, t1, r1 | |
def gf_monic(f, p, K): | |
""" | |
Compute LC and a monic polynomial in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_monic | |
>>> gf_monic(ZZ.map([3, 2, 4]), 5, ZZ) | |
(3, [1, 4, 3]) | |
""" | |
if not f: | |
return K.zero, [] | |
else: | |
lc = f[0] | |
if K.is_one(lc): | |
return lc, list(f) | |
else: | |
return lc, gf_quo_ground(f, lc, p, K) | |
def gf_diff(f, p, K): | |
""" | |
Differentiate polynomial in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_diff | |
>>> gf_diff([3, 2, 4], 5, ZZ) | |
[1, 2] | |
""" | |
df = gf_degree(f) | |
h, n = [K.zero]*df, df | |
for coeff in f[:-1]: | |
coeff *= K(n) | |
coeff %= p | |
if coeff: | |
h[df - n] = coeff | |
n -= 1 | |
return gf_strip(h) | |
def gf_eval(f, a, p, K): | |
""" | |
Evaluate ``f(a)`` in ``GF(p)`` using Horner scheme. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_eval | |
>>> gf_eval([3, 2, 4], 2, 5, ZZ) | |
0 | |
""" | |
result = K.zero | |
for c in f: | |
result *= a | |
result += c | |
result %= p | |
return result | |
def gf_multi_eval(f, A, p, K): | |
""" | |
Evaluate ``f(a)`` for ``a`` in ``[a_1, ..., a_n]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_multi_eval | |
>>> gf_multi_eval([3, 2, 4], [0, 1, 2, 3, 4], 5, ZZ) | |
[4, 4, 0, 2, 0] | |
""" | |
return [ gf_eval(f, a, p, K) for a in A ] | |
def gf_compose(f, g, p, K): | |
""" | |
Compute polynomial composition ``f(g)`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_compose | |
>>> gf_compose([3, 2, 4], [2, 2, 2], 5, ZZ) | |
[2, 4, 0, 3, 0] | |
""" | |
if len(g) <= 1: | |
return gf_strip([gf_eval(f, gf_LC(g, K), p, K)]) | |
if not f: | |
return [] | |
h = [f[0]] | |
for c in f[1:]: | |
h = gf_mul(h, g, p, K) | |
h = gf_add_ground(h, c, p, K) | |
return h | |
def gf_compose_mod(g, h, f, p, K): | |
""" | |
Compute polynomial composition ``g(h)`` in ``GF(p)[x]/(f)``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_compose_mod | |
>>> gf_compose_mod(ZZ.map([3, 2, 4]), ZZ.map([2, 2, 2]), ZZ.map([4, 3]), 5, ZZ) | |
[4] | |
""" | |
if not g: | |
return [] | |
comp = [g[0]] | |
for a in g[1:]: | |
comp = gf_mul(comp, h, p, K) | |
comp = gf_add_ground(comp, a, p, K) | |
comp = gf_rem(comp, f, p, K) | |
return comp | |
def gf_trace_map(a, b, c, n, f, p, K): | |
""" | |
Compute polynomial trace map in ``GF(p)[x]/(f)``. | |
Given a polynomial ``f`` in ``GF(p)[x]``, polynomials ``a``, ``b``, | |
``c`` in the quotient ring ``GF(p)[x]/(f)`` such that ``b = c**t | |
(mod f)`` for some positive power ``t`` of ``p``, and a positive | |
integer ``n``, returns a mapping:: | |
a -> a**t**n, a + a**t + a**t**2 + ... + a**t**n (mod f) | |
In factorization context, ``b = x**p mod f`` and ``c = x mod f``. | |
This way we can efficiently compute trace polynomials in equal | |
degree factorization routine, much faster than with other methods, | |
like iterated Frobenius algorithm, for large degrees. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_trace_map | |
>>> gf_trace_map([1, 2], [4, 4], [1, 1], 4, [3, 2, 4], 5, ZZ) | |
([1, 3], [1, 3]) | |
References | |
========== | |
.. [1] [Gathen92]_ | |
""" | |
u = gf_compose_mod(a, b, f, p, K) | |
v = b | |
if n & 1: | |
U = gf_add(a, u, p, K) | |
V = b | |
else: | |
U = a | |
V = c | |
n >>= 1 | |
while n: | |
u = gf_add(u, gf_compose_mod(u, v, f, p, K), p, K) | |
v = gf_compose_mod(v, v, f, p, K) | |
if n & 1: | |
U = gf_add(U, gf_compose_mod(u, V, f, p, K), p, K) | |
V = gf_compose_mod(v, V, f, p, K) | |
n >>= 1 | |
return gf_compose_mod(a, V, f, p, K), U | |
def _gf_trace_map(f, n, g, b, p, K): | |
""" | |
utility for ``gf_edf_shoup`` | |
""" | |
f = gf_rem(f, g, p, K) | |
h = f | |
r = f | |
for i in range(1, n): | |
h = gf_frobenius_map(h, g, b, p, K) | |
r = gf_add(r, h, p, K) | |
r = gf_rem(r, g, p, K) | |
return r | |
def gf_random(n, p, K): | |
""" | |
Generate a random polynomial in ``GF(p)[x]`` of degree ``n``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_random | |
>>> gf_random(10, 5, ZZ) #doctest: +SKIP | |
[1, 2, 3, 2, 1, 1, 1, 2, 0, 4, 2] | |
""" | |
pi = int(p) | |
return [K.one] + [ K(int(uniform(0, pi))) for i in range(0, n) ] | |
def gf_irreducible(n, p, K): | |
""" | |
Generate random irreducible polynomial of degree ``n`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_irreducible | |
>>> gf_irreducible(10, 5, ZZ) #doctest: +SKIP | |
[1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4] | |
""" | |
while True: | |
f = gf_random(n, p, K) | |
if gf_irreducible_p(f, p, K): | |
return f | |
def gf_irred_p_ben_or(f, p, K): | |
""" | |
Ben-Or's polynomial irreducibility test over finite fields. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_irred_p_ben_or | |
>>> gf_irred_p_ben_or(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) | |
True | |
>>> gf_irred_p_ben_or(ZZ.map([3, 2, 4]), 5, ZZ) | |
False | |
""" | |
n = gf_degree(f) | |
if n <= 1: | |
return True | |
_, f = gf_monic(f, p, K) | |
if n < 5: | |
H = h = gf_pow_mod([K.one, K.zero], p, f, p, K) | |
for i in range(0, n//2): | |
g = gf_sub(h, [K.one, K.zero], p, K) | |
if gf_gcd(f, g, p, K) == [K.one]: | |
h = gf_compose_mod(h, H, f, p, K) | |
else: | |
return False | |
else: | |
b = gf_frobenius_monomial_base(f, p, K) | |
H = h = gf_frobenius_map([K.one, K.zero], f, b, p, K) | |
for i in range(0, n//2): | |
g = gf_sub(h, [K.one, K.zero], p, K) | |
if gf_gcd(f, g, p, K) == [K.one]: | |
h = gf_frobenius_map(h, f, b, p, K) | |
else: | |
return False | |
return True | |
def gf_irred_p_rabin(f, p, K): | |
""" | |
Rabin's polynomial irreducibility test over finite fields. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_irred_p_rabin | |
>>> gf_irred_p_rabin(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) | |
True | |
>>> gf_irred_p_rabin(ZZ.map([3, 2, 4]), 5, ZZ) | |
False | |
""" | |
n = gf_degree(f) | |
if n <= 1: | |
return True | |
_, f = gf_monic(f, p, K) | |
x = [K.one, K.zero] | |
from sympy.ntheory import factorint | |
indices = { n//d for d in factorint(n) } | |
b = gf_frobenius_monomial_base(f, p, K) | |
h = b[1] | |
for i in range(1, n): | |
if i in indices: | |
g = gf_sub(h, x, p, K) | |
if gf_gcd(f, g, p, K) != [K.one]: | |
return False | |
h = gf_frobenius_map(h, f, b, p, K) | |
return h == x | |
_irred_methods = { | |
'ben-or': gf_irred_p_ben_or, | |
'rabin': gf_irred_p_rabin, | |
} | |
def gf_irreducible_p(f, p, K): | |
""" | |
Test irreducibility of a polynomial ``f`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_irreducible_p | |
>>> gf_irreducible_p(ZZ.map([1, 4, 2, 2, 3, 2, 4, 1, 4, 0, 4]), 5, ZZ) | |
True | |
>>> gf_irreducible_p(ZZ.map([3, 2, 4]), 5, ZZ) | |
False | |
""" | |
method = query('GF_IRRED_METHOD') | |
if method is not None: | |
irred = _irred_methods[method](f, p, K) | |
else: | |
irred = gf_irred_p_rabin(f, p, K) | |
return irred | |
def gf_sqf_p(f, p, K): | |
""" | |
Return ``True`` if ``f`` is square-free in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sqf_p | |
>>> gf_sqf_p(ZZ.map([3, 2, 4]), 5, ZZ) | |
True | |
>>> gf_sqf_p(ZZ.map([2, 4, 4, 2, 2, 1, 4]), 5, ZZ) | |
False | |
""" | |
_, f = gf_monic(f, p, K) | |
if not f: | |
return True | |
else: | |
return gf_gcd(f, gf_diff(f, p, K), p, K) == [K.one] | |
def gf_sqf_part(f, p, K): | |
""" | |
Return square-free part of a ``GF(p)[x]`` polynomial. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_sqf_part | |
>>> gf_sqf_part(ZZ.map([1, 1, 3, 0, 1, 0, 2, 2, 1]), 5, ZZ) | |
[1, 4, 3] | |
""" | |
_, sqf = gf_sqf_list(f, p, K) | |
g = [K.one] | |
for f, _ in sqf: | |
g = gf_mul(g, f, p, K) | |
return g | |
def gf_sqf_list(f, p, K, all=False): | |
""" | |
Return the square-free decomposition of a ``GF(p)[x]`` polynomial. | |
Given a polynomial ``f`` in ``GF(p)[x]``, returns the leading coefficient | |
of ``f`` and a square-free decomposition ``f_1**e_1 f_2**e_2 ... f_k**e_k`` | |
such that all ``f_i`` are monic polynomials and ``(f_i, f_j)`` for ``i != j`` | |
are co-prime and ``e_1 ... e_k`` are given in increasing order. All trivial | |
terms (i.e. ``f_i = 1``) are not included in the output. | |
Consider polynomial ``f = x**11 + 1`` over ``GF(11)[x]``:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import ( | |
... gf_from_dict, gf_diff, gf_sqf_list, gf_pow, | |
... ) | |
... # doctest: +NORMALIZE_WHITESPACE | |
>>> f = gf_from_dict({11: ZZ(1), 0: ZZ(1)}, 11, ZZ) | |
Note that ``f'(x) = 0``:: | |
>>> gf_diff(f, 11, ZZ) | |
[] | |
This phenomenon does not happen in characteristic zero. However we can | |
still compute square-free decomposition of ``f`` using ``gf_sqf()``:: | |
>>> gf_sqf_list(f, 11, ZZ) | |
(1, [([1, 1], 11)]) | |
We obtained factorization ``f = (x + 1)**11``. This is correct because:: | |
>>> gf_pow([1, 1], 11, 11, ZZ) == f | |
True | |
References | |
========== | |
.. [1] [Geddes92]_ | |
""" | |
n, sqf, factors, r = 1, False, [], int(p) | |
lc, f = gf_monic(f, p, K) | |
if gf_degree(f) < 1: | |
return lc, [] | |
while True: | |
F = gf_diff(f, p, K) | |
if F != []: | |
g = gf_gcd(f, F, p, K) | |
h = gf_quo(f, g, p, K) | |
i = 1 | |
while h != [K.one]: | |
G = gf_gcd(g, h, p, K) | |
H = gf_quo(h, G, p, K) | |
if gf_degree(H) > 0: | |
factors.append((H, i*n)) | |
g, h, i = gf_quo(g, G, p, K), G, i + 1 | |
if g == [K.one]: | |
sqf = True | |
else: | |
f = g | |
if not sqf: | |
d = gf_degree(f) // r | |
for i in range(0, d + 1): | |
f[i] = f[i*r] | |
f, n = f[:d + 1], n*r | |
else: | |
break | |
if all: | |
raise ValueError("'all=True' is not supported yet") | |
return lc, factors | |
def gf_Qmatrix(f, p, K): | |
""" | |
Calculate Berlekamp's ``Q`` matrix. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_Qmatrix | |
>>> gf_Qmatrix([3, 2, 4], 5, ZZ) | |
[[1, 0], | |
[3, 4]] | |
>>> gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ) | |
[[1, 0, 0, 0], | |
[0, 4, 0, 0], | |
[0, 0, 1, 0], | |
[0, 0, 0, 4]] | |
""" | |
n, r = gf_degree(f), int(p) | |
q = [K.one] + [K.zero]*(n - 1) | |
Q = [list(q)] + [[]]*(n - 1) | |
for i in range(1, (n - 1)*r + 1): | |
qq, c = [(-q[-1]*f[-1]) % p], q[-1] | |
for j in range(1, n): | |
qq.append((q[j - 1] - c*f[-j - 1]) % p) | |
if not (i % r): | |
Q[i//r] = list(qq) | |
q = qq | |
return Q | |
def gf_Qbasis(Q, p, K): | |
""" | |
Compute a basis of the kernel of ``Q``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_Qmatrix, gf_Qbasis | |
>>> gf_Qbasis(gf_Qmatrix([1, 0, 0, 0, 1], 5, ZZ), 5, ZZ) | |
[[1, 0, 0, 0], [0, 0, 1, 0]] | |
>>> gf_Qbasis(gf_Qmatrix([3, 2, 4], 5, ZZ), 5, ZZ) | |
[[1, 0]] | |
""" | |
Q, n = [ list(q) for q in Q ], len(Q) | |
for k in range(0, n): | |
Q[k][k] = (Q[k][k] - K.one) % p | |
for k in range(0, n): | |
for i in range(k, n): | |
if Q[k][i]: | |
break | |
else: | |
continue | |
inv = K.invert(Q[k][i], p) | |
for j in range(0, n): | |
Q[j][i] = (Q[j][i]*inv) % p | |
for j in range(0, n): | |
t = Q[j][k] | |
Q[j][k] = Q[j][i] | |
Q[j][i] = t | |
for i in range(0, n): | |
if i != k: | |
q = Q[k][i] | |
for j in range(0, n): | |
Q[j][i] = (Q[j][i] - Q[j][k]*q) % p | |
for i in range(0, n): | |
for j in range(0, n): | |
if i == j: | |
Q[i][j] = (K.one - Q[i][j]) % p | |
else: | |
Q[i][j] = (-Q[i][j]) % p | |
basis = [] | |
for q in Q: | |
if any(q): | |
basis.append(q) | |
return basis | |
def gf_berlekamp(f, p, K): | |
""" | |
Factor a square-free ``f`` in ``GF(p)[x]`` for small ``p``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_berlekamp | |
>>> gf_berlekamp([1, 0, 0, 0, 1], 5, ZZ) | |
[[1, 0, 2], [1, 0, 3]] | |
""" | |
Q = gf_Qmatrix(f, p, K) | |
V = gf_Qbasis(Q, p, K) | |
for i, v in enumerate(V): | |
V[i] = gf_strip(list(reversed(v))) | |
factors = [f] | |
for k in range(1, len(V)): | |
for f in list(factors): | |
s = K.zero | |
while s < p: | |
g = gf_sub_ground(V[k], s, p, K) | |
h = gf_gcd(f, g, p, K) | |
if h != [K.one] and h != f: | |
factors.remove(f) | |
f = gf_quo(f, h, p, K) | |
factors.extend([f, h]) | |
if len(factors) == len(V): | |
return _sort_factors(factors, multiple=False) | |
s += K.one | |
return _sort_factors(factors, multiple=False) | |
def gf_ddf_zassenhaus(f, p, K): | |
""" | |
Cantor-Zassenhaus: Deterministic Distinct Degree Factorization | |
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes | |
partial distinct degree factorization ``f_1 ... f_d`` of ``f`` where | |
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a | |
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0`` | |
is an argument to the equal degree factorization routine. | |
Consider the polynomial ``x**15 - 1`` in ``GF(11)[x]``:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_from_dict | |
>>> f = gf_from_dict({15: ZZ(1), 0: ZZ(-1)}, 11, ZZ) | |
Distinct degree factorization gives:: | |
>>> from sympy.polys.galoistools import gf_ddf_zassenhaus | |
>>> gf_ddf_zassenhaus(f, 11, ZZ) | |
[([1, 0, 0, 0, 0, 10], 1), ([1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1], 2)] | |
which means ``x**15 - 1 = (x**5 - 1) (x**10 + x**5 + 1)``. To obtain | |
factorization into irreducibles, use equal degree factorization | |
procedure (EDF) with each of the factors. | |
References | |
========== | |
.. [1] [Gathen99]_ | |
.. [2] [Geddes92]_ | |
""" | |
i, g, factors = 1, [K.one, K.zero], [] | |
b = gf_frobenius_monomial_base(f, p, K) | |
while 2*i <= gf_degree(f): | |
g = gf_frobenius_map(g, f, b, p, K) | |
h = gf_gcd(f, gf_sub(g, [K.one, K.zero], p, K), p, K) | |
if h != [K.one]: | |
factors.append((h, i)) | |
f = gf_quo(f, h, p, K) | |
g = gf_rem(g, f, p, K) | |
b = gf_frobenius_monomial_base(f, p, K) | |
i += 1 | |
if f != [K.one]: | |
return factors + [(f, gf_degree(f))] | |
else: | |
return factors | |
def gf_edf_zassenhaus(f, n, p, K): | |
""" | |
Cantor-Zassenhaus: Probabilistic Equal Degree Factorization | |
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and | |
an integer ``n``, such that ``n`` divides ``deg(f)``, returns all | |
irreducible factors ``f_1,...,f_d`` of ``f``, each of degree ``n``. | |
EDF procedure gives complete factorization over Galois fields. | |
Consider the square-free polynomial ``f = x**3 + x**2 + x + 1`` in | |
``GF(5)[x]``. Let's compute its irreducible factors of degree one:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_edf_zassenhaus | |
>>> gf_edf_zassenhaus([1,1,1,1], 1, 5, ZZ) | |
[[1, 1], [1, 2], [1, 3]] | |
Notes | |
===== | |
The case p == 2 is handled by Cohen's Algorithm 3.4.8. The case p odd is | |
as in Geddes Algorithm 8.9 (or Cohen's Algorithm 3.4.6). | |
References | |
========== | |
.. [1] [Gathen99]_ | |
.. [2] [Geddes92]_ Algorithm 8.9 | |
.. [3] [Cohen93]_ Algorithm 3.4.8 | |
""" | |
factors = [f] | |
if gf_degree(f) <= n: | |
return factors | |
N = gf_degree(f) // n | |
if p != 2: | |
b = gf_frobenius_monomial_base(f, p, K) | |
t = [K.one, K.zero] | |
while len(factors) < N: | |
if p == 2: | |
h = r = t | |
for i in range(n - 1): | |
r = gf_pow_mod(r, 2, f, p, K) | |
h = gf_add(h, r, p, K) | |
g = gf_gcd(f, h, p, K) | |
t += [K.zero, K.zero] | |
else: | |
r = gf_random(2 * n - 1, p, K) | |
h = _gf_pow_pnm1d2(r, n, f, b, p, K) | |
g = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K) | |
if g != [K.one] and g != f: | |
factors = gf_edf_zassenhaus(g, n, p, K) \ | |
+ gf_edf_zassenhaus(gf_quo(f, g, p, K), n, p, K) | |
return _sort_factors(factors, multiple=False) | |
def gf_ddf_shoup(f, p, K): | |
""" | |
Kaltofen-Shoup: Deterministic Distinct Degree Factorization | |
Given a monic square-free polynomial ``f`` in ``GF(p)[x]``, computes | |
partial distinct degree factorization ``f_1,...,f_d`` of ``f`` where | |
``deg(f_i) != deg(f_j)`` for ``i != j``. The result is returned as a | |
list of pairs ``(f_i, e_i)`` where ``deg(f_i) > 0`` and ``e_i > 0`` | |
is an argument to the equal degree factorization routine. | |
This algorithm is an improved version of Zassenhaus algorithm for | |
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_ddf_shoup, gf_from_dict | |
>>> f = gf_from_dict({6: ZZ(1), 5: ZZ(-1), 4: ZZ(1), 3: ZZ(1), 1: ZZ(-1)}, 3, ZZ) | |
>>> gf_ddf_shoup(f, 3, ZZ) | |
[([1, 1, 0], 1), ([1, 1, 0, 1, 2], 2)] | |
References | |
========== | |
.. [1] [Kaltofen98]_ | |
.. [2] [Shoup95]_ | |
.. [3] [Gathen92]_ | |
""" | |
n = gf_degree(f) | |
k = int(_ceil(_sqrt(n//2))) | |
b = gf_frobenius_monomial_base(f, p, K) | |
h = gf_frobenius_map([K.one, K.zero], f, b, p, K) | |
# U[i] = x**(p**i) | |
U = [[K.one, K.zero], h] + [K.zero]*(k - 1) | |
for i in range(2, k + 1): | |
U[i] = gf_frobenius_map(U[i-1], f, b, p, K) | |
h, U = U[k], U[:k] | |
# V[i] = x**(p**(k*(i+1))) | |
V = [h] + [K.zero]*(k - 1) | |
for i in range(1, k): | |
V[i] = gf_compose_mod(V[i - 1], h, f, p, K) | |
factors = [] | |
for i, v in enumerate(V): | |
h, j = [K.one], k - 1 | |
for u in U: | |
g = gf_sub(v, u, p, K) | |
h = gf_mul(h, g, p, K) | |
h = gf_rem(h, f, p, K) | |
g = gf_gcd(f, h, p, K) | |
f = gf_quo(f, g, p, K) | |
for u in reversed(U): | |
h = gf_sub(v, u, p, K) | |
F = gf_gcd(g, h, p, K) | |
if F != [K.one]: | |
factors.append((F, k*(i + 1) - j)) | |
g, j = gf_quo(g, F, p, K), j - 1 | |
if f != [K.one]: | |
factors.append((f, gf_degree(f))) | |
return factors | |
def gf_edf_shoup(f, n, p, K): | |
""" | |
Gathen-Shoup: Probabilistic Equal Degree Factorization | |
Given a monic square-free polynomial ``f`` in ``GF(p)[x]`` and integer | |
``n`` such that ``n`` divides ``deg(f)``, returns all irreducible factors | |
``f_1,...,f_d`` of ``f``, each of degree ``n``. This is a complete | |
factorization over Galois fields. | |
This algorithm is an improved version of Zassenhaus algorithm for | |
large ``deg(f)`` and modulus ``p`` (especially for ``deg(f) ~ lg(p)``). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_edf_shoup | |
>>> gf_edf_shoup(ZZ.map([1, 2837, 2277]), 1, 2917, ZZ) | |
[[1, 852], [1, 1985]] | |
References | |
========== | |
.. [1] [Shoup91]_ | |
.. [2] [Gathen92]_ | |
""" | |
N, q = gf_degree(f), int(p) | |
if not N: | |
return [] | |
if N <= n: | |
return [f] | |
factors, x = [f], [K.one, K.zero] | |
r = gf_random(N - 1, p, K) | |
if p == 2: | |
h = gf_pow_mod(x, q, f, p, K) | |
H = gf_trace_map(r, h, x, n - 1, f, p, K)[1] | |
h1 = gf_gcd(f, H, p, K) | |
h2 = gf_quo(f, h1, p, K) | |
factors = gf_edf_shoup(h1, n, p, K) \ | |
+ gf_edf_shoup(h2, n, p, K) | |
else: | |
b = gf_frobenius_monomial_base(f, p, K) | |
H = _gf_trace_map(r, n, f, b, p, K) | |
h = gf_pow_mod(H, (q - 1)//2, f, p, K) | |
h1 = gf_gcd(f, h, p, K) | |
h2 = gf_gcd(f, gf_sub_ground(h, K.one, p, K), p, K) | |
h3 = gf_quo(f, gf_mul(h1, h2, p, K), p, K) | |
factors = gf_edf_shoup(h1, n, p, K) \ | |
+ gf_edf_shoup(h2, n, p, K) \ | |
+ gf_edf_shoup(h3, n, p, K) | |
return _sort_factors(factors, multiple=False) | |
def gf_zassenhaus(f, p, K): | |
""" | |
Factor a square-free ``f`` in ``GF(p)[x]`` for medium ``p``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_zassenhaus | |
>>> gf_zassenhaus(ZZ.map([1, 4, 3]), 5, ZZ) | |
[[1, 1], [1, 3]] | |
""" | |
factors = [] | |
for factor, n in gf_ddf_zassenhaus(f, p, K): | |
factors += gf_edf_zassenhaus(factor, n, p, K) | |
return _sort_factors(factors, multiple=False) | |
def gf_shoup(f, p, K): | |
""" | |
Factor a square-free ``f`` in ``GF(p)[x]`` for large ``p``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_shoup | |
>>> gf_shoup(ZZ.map([1, 4, 3]), 5, ZZ) | |
[[1, 1], [1, 3]] | |
""" | |
factors = [] | |
for factor, n in gf_ddf_shoup(f, p, K): | |
factors += gf_edf_shoup(factor, n, p, K) | |
return _sort_factors(factors, multiple=False) | |
_factor_methods = { | |
'berlekamp': gf_berlekamp, # ``p`` : small | |
'zassenhaus': gf_zassenhaus, # ``p`` : medium | |
'shoup': gf_shoup, # ``p`` : large | |
} | |
def gf_factor_sqf(f, p, K, method=None): | |
""" | |
Factor a square-free polynomial ``f`` in ``GF(p)[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_factor_sqf | |
>>> gf_factor_sqf(ZZ.map([3, 2, 4]), 5, ZZ) | |
(3, [[1, 1], [1, 3]]) | |
""" | |
lc, f = gf_monic(f, p, K) | |
if gf_degree(f) < 1: | |
return lc, [] | |
method = method or query('GF_FACTOR_METHOD') | |
if method is not None: | |
factors = _factor_methods[method](f, p, K) | |
else: | |
factors = gf_zassenhaus(f, p, K) | |
return lc, factors | |
def gf_factor(f, p, K): | |
""" | |
Factor (non square-free) polynomials in ``GF(p)[x]``. | |
Given a possibly non square-free polynomial ``f`` in ``GF(p)[x]``, | |
returns its complete factorization into irreducibles:: | |
f_1(x)**e_1 f_2(x)**e_2 ... f_d(x)**e_d | |
where each ``f_i`` is a monic polynomial and ``gcd(f_i, f_j) == 1``, | |
for ``i != j``. The result is given as a tuple consisting of the | |
leading coefficient of ``f`` and a list of factors of ``f`` with | |
their multiplicities. | |
The algorithm proceeds by first computing square-free decomposition | |
of ``f`` and then iteratively factoring each of square-free factors. | |
Consider a non square-free polynomial ``f = (7*x + 1) (x + 2)**2`` in | |
``GF(11)[x]``. We obtain its factorization into irreducibles as follows:: | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.galoistools import gf_factor | |
>>> gf_factor(ZZ.map([5, 2, 7, 2]), 11, ZZ) | |
(5, [([1, 2], 1), ([1, 8], 2)]) | |
We arrived with factorization ``f = 5 (x + 2) (x + 8)**2``. We did not | |
recover the exact form of the input polynomial because we requested to | |
get monic factors of ``f`` and its leading coefficient separately. | |
Square-free factors of ``f`` can be factored into irreducibles over | |
``GF(p)`` using three very different methods: | |
Berlekamp | |
efficient for very small values of ``p`` (usually ``p < 25``) | |
Cantor-Zassenhaus | |
efficient on average input and with "typical" ``p`` | |
Shoup-Kaltofen-Gathen | |
efficient with very large inputs and modulus | |
If you want to use a specific factorization method, instead of the default | |
one, set ``GF_FACTOR_METHOD`` with one of ``berlekamp``, ``zassenhaus`` or | |
``shoup`` values. | |
References | |
========== | |
.. [1] [Gathen99]_ | |
""" | |
lc, f = gf_monic(f, p, K) | |
if gf_degree(f) < 1: | |
return lc, [] | |
factors = [] | |
for g, n in gf_sqf_list(f, p, K)[1]: | |
for h in gf_factor_sqf(g, p, K)[1]: | |
factors.append((h, n)) | |
return lc, _sort_factors(factors) | |
def gf_value(f, a): | |
""" | |
Value of polynomial 'f' at 'a' in field R. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import gf_value | |
>>> gf_value([1, 7, 2, 4], 11) | |
2204 | |
""" | |
result = 0 | |
for c in f: | |
result *= a | |
result += c | |
return result | |
def linear_congruence(a, b, m): | |
""" | |
Returns the values of x satisfying a*x congruent b mod(m) | |
Here m is positive integer and a, b are natural numbers. | |
This function returns only those values of x which are distinct mod(m). | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import linear_congruence | |
>>> linear_congruence(3, 12, 15) | |
[4, 9, 14] | |
There are 3 solutions distinct mod(15) since gcd(a, m) = gcd(3, 15) = 3. | |
References | |
========== | |
.. [1] https://en.wikipedia.org/wiki/Linear_congruence_theorem | |
""" | |
from sympy.polys.polytools import gcdex | |
if a % m == 0: | |
if b % m == 0: | |
return list(range(m)) | |
else: | |
return [] | |
r, _, g = gcdex(a, m) | |
if b % g != 0: | |
return [] | |
return [(r * b // g + t * m // g) % m for t in range(g)] | |
def _raise_mod_power(x, s, p, f): | |
""" | |
Used in gf_csolve to generate solutions of f(x) cong 0 mod(p**(s + 1)) | |
from the solutions of f(x) cong 0 mod(p**s). | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import _raise_mod_power | |
>>> from sympy.polys.galoistools import csolve_prime | |
These is the solutions of f(x) = x**2 + x + 7 cong 0 mod(3) | |
>>> f = [1, 1, 7] | |
>>> csolve_prime(f, 3) | |
[1] | |
>>> [ i for i in range(3) if not (i**2 + i + 7) % 3] | |
[1] | |
The solutions of f(x) cong 0 mod(9) are constructed from the | |
values returned from _raise_mod_power: | |
>>> x, s, p = 1, 1, 3 | |
>>> V = _raise_mod_power(x, s, p, f) | |
>>> [x + v * p**s for v in V] | |
[1, 4, 7] | |
And these are confirmed with the following: | |
>>> [ i for i in range(3**2) if not (i**2 + i + 7) % 3**2] | |
[1, 4, 7] | |
""" | |
from sympy.polys.domains import ZZ | |
f_f = gf_diff(f, p, ZZ) | |
alpha = gf_value(f_f, x) | |
beta = - gf_value(f, x) // p**s | |
return linear_congruence(alpha, beta, p) | |
def _csolve_prime_las_vegas(f, p, seed=None): | |
r""" Solutions of `f(x) \equiv 0 \pmod{p}`, `f(0) \not\equiv 0 \pmod{p}`. | |
Explanation | |
=========== | |
This algorithm is classified as the Las Vegas method. | |
That is, it always returns the correct answer and solves the problem | |
fast in many cases, but if it is unlucky, it does not answer forever. | |
Suppose the polynomial f is not a zero polynomial. Assume further | |
that it is of degree at most p-1 and `f(0)\not\equiv 0 \pmod{p}`. | |
These assumptions are not an essential part of the algorithm, | |
only that it is more convenient for the function calling this | |
function to resolve them. | |
Note that `x^{p-1} - 1 \equiv \prod_{a=1}^{p-1}(x - a) \pmod{p}`. | |
Thus, the greatest common divisor with f is `\prod_{s \in S}(x - s)`, | |
with S being the set of solutions to f. Furthermore, | |
when a is randomly determined, `(x+a)^{(p-1)/2}-1` is | |
a polynomial with (p-1)/2 randomly chosen solutions. | |
The greatest common divisor of f may be a nontrivial factor of f. | |
When p is large and the degree of f is small, | |
it is faster than naive solution methods. | |
Parameters | |
========== | |
f : polynomial | |
p : prime number | |
Returns | |
======= | |
list[int] | |
a list of solutions, sorted in ascending order | |
by integers in the range [1, p). The same value | |
does not exist in the list even if there is | |
a multiple solution. If no solution exists, returns []. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import _csolve_prime_las_vegas | |
>>> _csolve_prime_las_vegas([1, 4, 3], 7) # x^2 + 4x + 3 = 0 (mod 7) | |
[4, 6] | |
>>> _csolve_prime_las_vegas([5, 7, 1, 9], 11) # 5x^3 + 7x^2 + x + 9 = 0 (mod 11) | |
[1, 5, 8] | |
References | |
========== | |
.. [1] R. Crandall and C. Pomerance "Prime Numbers", 2nd Ed., Algorithm 2.3.10 | |
""" | |
from sympy.polys.domains import ZZ | |
from sympy.ntheory import sqrt_mod | |
randint = _randint(seed) | |
root = set() | |
g = gf_pow_mod([1, 0], p - 1, f, p, ZZ) | |
g = gf_sub_ground(g, 1, p, ZZ) | |
# We want to calculate gcd(x**(p-1) - 1, f(x)) | |
factors = [gf_gcd(f, g, p, ZZ)] | |
while factors: | |
f = factors.pop() | |
# If the degree is small, solve directly | |
if len(f) <= 1: | |
continue | |
if len(f) == 2: | |
root.add(-invert(f[0], p) * f[1] % p) | |
continue | |
if len(f) == 3: | |
inv = invert(f[0], p) | |
b = f[1] * inv % p | |
b = (b + p * (b % 2)) // 2 | |
root.update((r - b) % p for r in | |
sqrt_mod(b**2 - f[2] * inv, p, all_roots=True)) | |
continue | |
while True: | |
# Determine `a` randomly and | |
# compute gcd((x+a)**((p-1)//2)-1, f(x)) | |
a = randint(0, p - 1) | |
g = gf_pow_mod([1, a], (p - 1) // 2, f, p, ZZ) | |
g = gf_sub_ground(g, 1, p, ZZ) | |
g = gf_gcd(f, g, p, ZZ) | |
if 1 < len(g) < len(f): | |
factors.append(g) | |
factors.append(gf_div(f, g, p, ZZ)[0]) | |
break | |
return sorted(root) | |
def csolve_prime(f, p, e=1): | |
r""" Solutions of `f(x) \equiv 0 \pmod{p^e}`. | |
Parameters | |
========== | |
f : polynomial | |
p : prime number | |
e : positive integer | |
Returns | |
======= | |
list[int] | |
a list of solutions, sorted in ascending order | |
by integers in the range [1, p**e). The same value | |
does not exist in the list even if there is | |
a multiple solution. If no solution exists, returns []. | |
Examples | |
======== | |
>>> from sympy.polys.galoistools import csolve_prime | |
>>> csolve_prime([1, 1, 7], 3, 1) | |
[1] | |
>>> csolve_prime([1, 1, 7], 3, 2) | |
[1, 4, 7] | |
Solutions [7, 4, 1] (mod 3**2) are generated by ``_raise_mod_power()`` | |
from solution [1] (mod 3). | |
""" | |
from sympy.polys.domains import ZZ | |
g = [MPZ(int(c)) for c in f] | |
# Convert to polynomial of degree at most p-1 | |
for i in range(len(g) - p): | |
g[i + p - 1] += g[i] | |
g[i] = 0 | |
g = gf_trunc(g, p) | |
# Checks whether g(x) is divisible by x | |
k = 0 | |
while k < len(g) and g[len(g) - k - 1] == 0: | |
k += 1 | |
if k: | |
g = g[:-k] | |
root_zero = [0] | |
else: | |
root_zero = [] | |
if g == []: | |
X1 = list(range(p)) | |
elif len(g)**2 < p: | |
# The conditions under which `_csolve_prime_las_vegas` is faster than | |
# a naive solution are worth considering. | |
X1 = root_zero + _csolve_prime_las_vegas(g, p) | |
else: | |
X1 = root_zero + [i for i in range(p) if gf_eval(g, i, p, ZZ) == 0] | |
if e == 1: | |
return X1 | |
X = [] | |
S = list(zip(X1, [1]*len(X1))) | |
while S: | |
x, s = S.pop() | |
if s == e: | |
X.append(x) | |
else: | |
s1 = s + 1 | |
ps = p**s | |
S.extend([(x + v*ps, s1) for v in _raise_mod_power(x, s, p, f)]) | |
return sorted(X) | |
def gf_csolve(f, n): | |
""" | |
To solve f(x) congruent 0 mod(n). | |
n is divided into canonical factors and f(x) cong 0 mod(p**e) will be | |
solved for each factor. Applying the Chinese Remainder Theorem to the | |
results returns the final answers. | |
Examples | |
======== | |
Solve [1, 1, 7] congruent 0 mod(189): | |
>>> from sympy.polys.galoistools import gf_csolve | |
>>> gf_csolve([1, 1, 7], 189) | |
[13, 49, 76, 112, 139, 175] | |
See Also | |
======== | |
sympy.ntheory.residue_ntheory.polynomial_congruence : a higher level solving routine | |
References | |
========== | |
.. [1] 'An introduction to the Theory of Numbers' 5th Edition by Ivan Niven, | |
Zuckerman and Montgomery. | |
""" | |
from sympy.polys.domains import ZZ | |
from sympy.ntheory import factorint | |
P = factorint(n) | |
X = [csolve_prime(f, p, e) for p, e in P.items()] | |
pools = list(map(tuple, X)) | |
perms = [[]] | |
for pool in pools: | |
perms = [x + [y] for x in perms for y in pool] | |
dist_factors = [pow(p, e) for p, e in P.items()] | |
return sorted([gf_crt(per, dist_factors, ZZ) for per in perms]) | |