Spaces:
Running
Running
"""Implementation of :class:`RealField` class. """ | |
from sympy.external.gmpy import SYMPY_INTS | |
from sympy.core.numbers import Float | |
from sympy.polys.domains.field import Field | |
from sympy.polys.domains.simpledomain import SimpleDomain | |
from sympy.polys.domains.characteristiczero import CharacteristicZero | |
from sympy.polys.domains.mpelements import MPContext | |
from sympy.polys.polyerrors import CoercionFailed | |
from sympy.utilities import public | |
class RealField(Field, CharacteristicZero, SimpleDomain): | |
"""Real numbers up to the given precision. """ | |
rep = 'RR' | |
is_RealField = is_RR = True | |
is_Exact = False | |
is_Numerical = True | |
is_PID = False | |
has_assoc_Ring = False | |
has_assoc_Field = True | |
_default_precision = 53 | |
def has_default_precision(self): | |
return self.precision == self._default_precision | |
def precision(self): | |
return self._context.prec | |
def dps(self): | |
return self._context.dps | |
def tolerance(self): | |
return self._context.tolerance | |
def __init__(self, prec=_default_precision, dps=None, tol=None): | |
context = MPContext(prec, dps, tol, True) | |
context._parent = self | |
self._context = context | |
self._dtype = context.mpf | |
self.zero = self.dtype(0) | |
self.one = self.dtype(1) | |
def tp(self): | |
# XXX: Domain treats tp as an alis of dtype. Here we need to two | |
# separate things: dtype is a callable to make/convert instances. | |
# We use tp with isinstance to check if an object is an instance | |
# of the domain already. | |
return self._dtype | |
def dtype(self, arg): | |
# XXX: This is needed because mpmath does not recognise fmpz. | |
# It might be better to add conversion routines to mpmath and if that | |
# happens then this can be removed. | |
if isinstance(arg, SYMPY_INTS): | |
arg = int(arg) | |
return self._dtype(arg) | |
def __eq__(self, other): | |
return (isinstance(other, RealField) | |
and self.precision == other.precision | |
and self.tolerance == other.tolerance) | |
def __hash__(self): | |
return hash((self.__class__.__name__, self._dtype, self.precision, self.tolerance)) | |
def to_sympy(self, element): | |
"""Convert ``element`` to SymPy number. """ | |
return Float(element, self.dps) | |
def from_sympy(self, expr): | |
"""Convert SymPy's number to ``dtype``. """ | |
number = expr.evalf(n=self.dps) | |
if number.is_Number: | |
return self.dtype(number) | |
else: | |
raise CoercionFailed("expected real number, got %s" % expr) | |
def from_ZZ(self, element, base): | |
return self.dtype(element) | |
def from_ZZ_python(self, element, base): | |
return self.dtype(element) | |
def from_ZZ_gmpy(self, element, base): | |
return self.dtype(int(element)) | |
# XXX: We need to convert the denominators to int here because mpmath does | |
# not recognise mpz. Ideally mpmath would handle this and if it changed to | |
# do so then the calls to int here could be removed. | |
def from_QQ(self, element, base): | |
return self.dtype(element.numerator) / int(element.denominator) | |
def from_QQ_python(self, element, base): | |
return self.dtype(element.numerator) / int(element.denominator) | |
def from_QQ_gmpy(self, element, base): | |
return self.dtype(int(element.numerator)) / int(element.denominator) | |
def from_AlgebraicField(self, element, base): | |
return self.from_sympy(base.to_sympy(element).evalf(self.dps)) | |
def from_RealField(self, element, base): | |
if self == base: | |
return element | |
else: | |
return self.dtype(element) | |
def from_ComplexField(self, element, base): | |
if not element.imag: | |
return self.dtype(element.real) | |
def to_rational(self, element, limit=True): | |
"""Convert a real number to rational number. """ | |
return self._context.to_rational(element, limit) | |
def get_ring(self): | |
"""Returns a ring associated with ``self``. """ | |
return self | |
def get_exact(self): | |
"""Returns an exact domain associated with ``self``. """ | |
from sympy.polys.domains import QQ | |
return QQ | |
def gcd(self, a, b): | |
"""Returns GCD of ``a`` and ``b``. """ | |
return self.one | |
def lcm(self, a, b): | |
"""Returns LCM of ``a`` and ``b``. """ | |
return a*b | |
def almosteq(self, a, b, tolerance=None): | |
"""Check if ``a`` and ``b`` are almost equal. """ | |
return self._context.almosteq(a, b, tolerance) | |
def is_square(self, a): | |
"""Returns ``True`` if ``a >= 0`` and ``False`` otherwise. """ | |
return a >= 0 | |
def exsqrt(self, a): | |
"""Non-negative square root for ``a >= 0`` and ``None`` otherwise. | |
Explanation | |
=========== | |
The square root may be slightly inaccurate due to floating point | |
rounding error. | |
""" | |
return a ** 0.5 if a >= 0 else None | |
RR = RealField() | |