Spaces:
Running
Running
"""Implementation of :class:`PolynomialRing` class. """ | |
from sympy.polys.domains.ring import Ring | |
from sympy.polys.domains.compositedomain import CompositeDomain | |
from sympy.polys.polyerrors import CoercionFailed, GeneratorsError | |
from sympy.utilities import public | |
class PolynomialRing(Ring, CompositeDomain): | |
"""A class for representing multivariate polynomial rings. """ | |
is_PolynomialRing = is_Poly = True | |
has_assoc_Ring = True | |
has_assoc_Field = True | |
def __init__(self, domain_or_ring, symbols=None, order=None): | |
from sympy.polys.rings import PolyRing | |
if isinstance(domain_or_ring, PolyRing) and symbols is None and order is None: | |
ring = domain_or_ring | |
else: | |
ring = PolyRing(symbols, domain_or_ring, order) | |
self.ring = ring | |
self.dtype = ring.dtype | |
self.gens = ring.gens | |
self.ngens = ring.ngens | |
self.symbols = ring.symbols | |
self.domain = ring.domain | |
if symbols: | |
if ring.domain.is_Field and ring.domain.is_Exact and len(symbols)==1: | |
self.is_PID = True | |
# TODO: remove this | |
self.dom = self.domain | |
def new(self, element): | |
return self.ring.ring_new(element) | |
def zero(self): | |
return self.ring.zero | |
def one(self): | |
return self.ring.one | |
def order(self): | |
return self.ring.order | |
def __str__(self): | |
return str(self.domain) + '[' + ','.join(map(str, self.symbols)) + ']' | |
def __hash__(self): | |
return hash((self.__class__.__name__, self.dtype.ring, self.domain, self.symbols)) | |
def __eq__(self, other): | |
"""Returns `True` if two domains are equivalent. """ | |
return isinstance(other, PolynomialRing) and \ | |
(self.dtype.ring, self.domain, self.symbols) == \ | |
(other.dtype.ring, other.domain, other.symbols) | |
def is_unit(self, a): | |
"""Returns ``True`` if ``a`` is a unit of ``self``""" | |
if not a.is_ground: | |
return False | |
K = self.domain | |
return K.is_unit(K.convert_from(a, self)) | |
def canonical_unit(self, a): | |
u = self.domain.canonical_unit(a.LC) | |
return self.ring.ground_new(u) | |
def to_sympy(self, a): | |
"""Convert `a` to a SymPy object. """ | |
return a.as_expr() | |
def from_sympy(self, a): | |
"""Convert SymPy's expression to `dtype`. """ | |
return self.ring.from_expr(a) | |
def from_ZZ(K1, a, K0): | |
"""Convert a Python `int` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ZZ_python(K1, a, K0): | |
"""Convert a Python `int` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_QQ(K1, a, K0): | |
"""Convert a Python `Fraction` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_QQ_python(K1, a, K0): | |
"""Convert a Python `Fraction` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ZZ_gmpy(K1, a, K0): | |
"""Convert a GMPY `mpz` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_QQ_gmpy(K1, a, K0): | |
"""Convert a GMPY `mpq` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_GaussianIntegerRing(K1, a, K0): | |
"""Convert a `GaussianInteger` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_GaussianRationalField(K1, a, K0): | |
"""Convert a `GaussianRational` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_RealField(K1, a, K0): | |
"""Convert a mpmath `mpf` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_ComplexField(K1, a, K0): | |
"""Convert a mpmath `mpf` object to `dtype`. """ | |
return K1(K1.domain.convert(a, K0)) | |
def from_AlgebraicField(K1, a, K0): | |
"""Convert an algebraic number to ``dtype``. """ | |
if K1.domain != K0: | |
a = K1.domain.convert_from(a, K0) | |
if a is not None: | |
return K1.new(a) | |
def from_PolynomialRing(K1, a, K0): | |
"""Convert a polynomial to ``dtype``. """ | |
try: | |
return a.set_ring(K1.ring) | |
except (CoercionFailed, GeneratorsError): | |
return None | |
def from_FractionField(K1, a, K0): | |
"""Convert a rational function to ``dtype``. """ | |
if K1.domain == K0: | |
return K1.ring.from_list([a]) | |
q, r = K0.numer(a).div(K0.denom(a)) | |
if r.is_zero: | |
return K1.from_PolynomialRing(q, K0.field.ring.to_domain()) | |
else: | |
return None | |
def from_GlobalPolynomialRing(K1, a, K0): | |
"""Convert from old poly ring to ``dtype``. """ | |
if K1.symbols == K0.gens: | |
ad = a.to_dict() | |
if K1.domain != K0.domain: | |
ad = {m: K1.domain.convert(c) for m, c in ad.items()} | |
return K1(ad) | |
elif a.is_ground and K0.domain == K1: | |
return K1.convert_from(a.to_list()[0], K0.domain) | |
def get_field(self): | |
"""Returns a field associated with `self`. """ | |
return self.ring.to_field().to_domain() | |
def is_positive(self, a): | |
"""Returns True if `LC(a)` is positive. """ | |
return self.domain.is_positive(a.LC) | |
def is_negative(self, a): | |
"""Returns True if `LC(a)` is negative. """ | |
return self.domain.is_negative(a.LC) | |
def is_nonpositive(self, a): | |
"""Returns True if `LC(a)` is non-positive. """ | |
return self.domain.is_nonpositive(a.LC) | |
def is_nonnegative(self, a): | |
"""Returns True if `LC(a)` is non-negative. """ | |
return self.domain.is_nonnegative(a.LC) | |
def gcdex(self, a, b): | |
"""Extended GCD of `a` and `b`. """ | |
return a.gcdex(b) | |
def gcd(self, a, b): | |
"""Returns GCD of `a` and `b`. """ | |
return a.gcd(b) | |
def lcm(self, a, b): | |
"""Returns LCM of `a` and `b`. """ | |
return a.lcm(b) | |
def factorial(self, a): | |
"""Returns factorial of `a`. """ | |
return self.dtype(self.domain.factorial(a)) | |