Spaces:
Running
Running
from sympy.core import S | |
from sympy.polys import Poly | |
def dispersionset(p, q=None, *gens, **args): | |
r"""Compute the *dispersion set* of two polynomials. | |
For two polynomials `f(x)` and `g(x)` with `\deg f > 0` | |
and `\deg g > 0` the dispersion set `\operatorname{J}(f, g)` is defined as: | |
.. math:: | |
\operatorname{J}(f, g) | |
& := \{a \in \mathbb{N}_0 | \gcd(f(x), g(x+a)) \neq 1\} \\ | |
& = \{a \in \mathbb{N}_0 | \deg \gcd(f(x), g(x+a)) \geq 1\} | |
For a single polynomial one defines `\operatorname{J}(f) := \operatorname{J}(f, f)`. | |
Examples | |
======== | |
>>> from sympy import poly | |
>>> from sympy.polys.dispersion import dispersion, dispersionset | |
>>> from sympy.abc import x | |
Dispersion set and dispersion of a simple polynomial: | |
>>> fp = poly((x - 3)*(x + 3), x) | |
>>> sorted(dispersionset(fp)) | |
[0, 6] | |
>>> dispersion(fp) | |
6 | |
Note that the definition of the dispersion is not symmetric: | |
>>> fp = poly(x**4 - 3*x**2 + 1, x) | |
>>> gp = fp.shift(-3) | |
>>> sorted(dispersionset(fp, gp)) | |
[2, 3, 4] | |
>>> dispersion(fp, gp) | |
4 | |
>>> sorted(dispersionset(gp, fp)) | |
[] | |
>>> dispersion(gp, fp) | |
-oo | |
Computing the dispersion also works over field extensions: | |
>>> from sympy import sqrt | |
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') | |
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') | |
>>> sorted(dispersionset(fp, gp)) | |
[2] | |
>>> sorted(dispersionset(gp, fp)) | |
[1, 4] | |
We can even perform the computations for polynomials | |
having symbolic coefficients: | |
>>> from sympy.abc import a | |
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) | |
>>> sorted(dispersionset(fp)) | |
[0, 1] | |
See Also | |
======== | |
dispersion | |
References | |
========== | |
.. [1] [ManWright94]_ | |
.. [2] [Koepf98]_ | |
.. [3] [Abramov71]_ | |
.. [4] [Man93]_ | |
""" | |
# Check for valid input | |
same = False if q is not None else True | |
if same: | |
q = p | |
p = Poly(p, *gens, **args) | |
q = Poly(q, *gens, **args) | |
if not p.is_univariate or not q.is_univariate: | |
raise ValueError("Polynomials need to be univariate") | |
# The generator | |
if not p.gen == q.gen: | |
raise ValueError("Polynomials must have the same generator") | |
gen = p.gen | |
# We define the dispersion of constant polynomials to be zero | |
if p.degree() < 1 or q.degree() < 1: | |
return {0} | |
# Factor p and q over the rationals | |
fp = p.factor_list() | |
fq = q.factor_list() if not same else fp | |
# Iterate over all pairs of factors | |
J = set() | |
for s, unused in fp[1]: | |
for t, unused in fq[1]: | |
m = s.degree() | |
n = t.degree() | |
if n != m: | |
continue | |
an = s.LC() | |
bn = t.LC() | |
if not (an - bn).is_zero: | |
continue | |
# Note that the roles of `s` and `t` below are switched | |
# w.r.t. the original paper. This is for consistency | |
# with the description in the book of W. Koepf. | |
anm1 = s.coeff_monomial(gen**(m-1)) | |
bnm1 = t.coeff_monomial(gen**(n-1)) | |
alpha = (anm1 - bnm1) / S(n*bn) | |
if not alpha.is_integer: | |
continue | |
if alpha < 0 or alpha in J: | |
continue | |
if n > 1 and not (s - t.shift(alpha)).is_zero: | |
continue | |
J.add(alpha) | |
return J | |
def dispersion(p, q=None, *gens, **args): | |
r"""Compute the *dispersion* of polynomials. | |
For two polynomials `f(x)` and `g(x)` with `\deg f > 0` | |
and `\deg g > 0` the dispersion `\operatorname{dis}(f, g)` is defined as: | |
.. math:: | |
\operatorname{dis}(f, g) | |
& := \max\{ J(f,g) \cup \{0\} \} \\ | |
& = \max\{ \{a \in \mathbb{N} | \gcd(f(x), g(x+a)) \neq 1\} \cup \{0\} \} | |
and for a single polynomial `\operatorname{dis}(f) := \operatorname{dis}(f, f)`. | |
Note that we make the definition `\max\{\} := -\infty`. | |
Examples | |
======== | |
>>> from sympy import poly | |
>>> from sympy.polys.dispersion import dispersion, dispersionset | |
>>> from sympy.abc import x | |
Dispersion set and dispersion of a simple polynomial: | |
>>> fp = poly((x - 3)*(x + 3), x) | |
>>> sorted(dispersionset(fp)) | |
[0, 6] | |
>>> dispersion(fp) | |
6 | |
Note that the definition of the dispersion is not symmetric: | |
>>> fp = poly(x**4 - 3*x**2 + 1, x) | |
>>> gp = fp.shift(-3) | |
>>> sorted(dispersionset(fp, gp)) | |
[2, 3, 4] | |
>>> dispersion(fp, gp) | |
4 | |
>>> sorted(dispersionset(gp, fp)) | |
[] | |
>>> dispersion(gp, fp) | |
-oo | |
The maximum of an empty set is defined to be `-\infty` | |
as seen in this example. | |
Computing the dispersion also works over field extensions: | |
>>> from sympy import sqrt | |
>>> fp = poly(x**2 + sqrt(5)*x - 1, x, domain='QQ<sqrt(5)>') | |
>>> gp = poly(x**2 + (2 + sqrt(5))*x + sqrt(5), x, domain='QQ<sqrt(5)>') | |
>>> sorted(dispersionset(fp, gp)) | |
[2] | |
>>> sorted(dispersionset(gp, fp)) | |
[1, 4] | |
We can even perform the computations for polynomials | |
having symbolic coefficients: | |
>>> from sympy.abc import a | |
>>> fp = poly(4*x**4 + (4*a + 8)*x**3 + (a**2 + 6*a + 4)*x**2 + (a**2 + 2*a)*x, x) | |
>>> sorted(dispersionset(fp)) | |
[0, 1] | |
See Also | |
======== | |
dispersionset | |
References | |
========== | |
.. [1] [ManWright94]_ | |
.. [2] [Koepf98]_ | |
.. [3] [Abramov71]_ | |
.. [4] [Man93]_ | |
""" | |
J = dispersionset(p, q, *gens, **args) | |
if not J: | |
# Definition for maximum of empty set | |
j = S.NegativeInfinity | |
else: | |
j = max(J) | |
return j | |