Spaces:
Running
Running
"""Advanced tools for dense recursive polynomials in ``K[x]`` or ``K[X]``. """ | |
from sympy.polys.densearith import ( | |
dup_add_term, dmp_add_term, | |
dup_lshift, | |
dup_add, dmp_add, | |
dup_sub, dmp_sub, | |
dup_mul, dmp_mul, | |
dup_sqr, | |
dup_div, | |
dup_rem, dmp_rem, | |
dmp_expand, | |
dup_mul_ground, dmp_mul_ground, | |
dup_quo_ground, dmp_quo_ground, | |
dup_exquo_ground, dmp_exquo_ground, | |
) | |
from sympy.polys.densebasic import ( | |
dup_strip, dmp_strip, | |
dup_convert, dmp_convert, | |
dup_degree, dmp_degree, | |
dmp_to_dict, | |
dmp_from_dict, | |
dup_LC, dmp_LC, dmp_ground_LC, | |
dup_TC, dmp_TC, | |
dmp_zero, dmp_ground, | |
dmp_zero_p, | |
dup_to_raw_dict, dup_from_raw_dict, | |
dmp_zeros | |
) | |
from sympy.polys.polyerrors import ( | |
MultivariatePolynomialError, | |
DomainError | |
) | |
from sympy.utilities import variations | |
from math import ceil as _ceil, log2 as _log2 | |
def dup_integrate(f, m, K): | |
""" | |
Computes the indefinite integral of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_integrate(x**2 + 2*x, 1) | |
1/3*x**3 + x**2 | |
>>> R.dup_integrate(x**2 + 2*x, 2) | |
1/12*x**4 + 1/3*x**3 | |
""" | |
if m <= 0 or not f: | |
return f | |
g = [K.zero]*m | |
for i, c in enumerate(reversed(f)): | |
n = i + 1 | |
for j in range(1, m): | |
n *= i + j + 1 | |
g.insert(0, K.exquo(c, K(n))) | |
return g | |
def dmp_integrate(f, m, u, K): | |
""" | |
Computes the indefinite integral of ``f`` in ``x_0`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_integrate(x + 2*y, 1) | |
1/2*x**2 + 2*x*y | |
>>> R.dmp_integrate(x + 2*y, 2) | |
1/6*x**3 + x**2*y | |
""" | |
if not u: | |
return dup_integrate(f, m, K) | |
if m <= 0 or dmp_zero_p(f, u): | |
return f | |
g, v = dmp_zeros(m, u - 1, K), u - 1 | |
for i, c in enumerate(reversed(f)): | |
n = i + 1 | |
for j in range(1, m): | |
n *= i + j + 1 | |
g.insert(0, dmp_quo_ground(c, K(n), v, K)) | |
return g | |
def _rec_integrate_in(g, m, v, i, j, K): | |
"""Recursive helper for :func:`dmp_integrate_in`.""" | |
if i == j: | |
return dmp_integrate(g, m, v, K) | |
w, i = v - 1, i + 1 | |
return dmp_strip([ _rec_integrate_in(c, m, w, i, j, K) for c in g ], v) | |
def dmp_integrate_in(f, m, j, u, K): | |
""" | |
Computes the indefinite integral of ``f`` in ``x_j`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_integrate_in(x + 2*y, 1, 0) | |
1/2*x**2 + 2*x*y | |
>>> R.dmp_integrate_in(x + 2*y, 1, 1) | |
x*y + y**2 | |
""" | |
if j < 0 or j > u: | |
raise IndexError("0 <= j <= u expected, got u = %d, j = %d" % (u, j)) | |
return _rec_integrate_in(f, m, u, 0, j, K) | |
def dup_diff(f, m, K): | |
""" | |
``m``-th order derivative of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 1) | |
3*x**2 + 4*x + 3 | |
>>> R.dup_diff(x**3 + 2*x**2 + 3*x + 4, 2) | |
6*x + 4 | |
""" | |
if m <= 0: | |
return f | |
n = dup_degree(f) | |
if n < m: | |
return [] | |
deriv = [] | |
if m == 1: | |
for coeff in f[:-m]: | |
deriv.append(K(n)*coeff) | |
n -= 1 | |
else: | |
for coeff in f[:-m]: | |
k = n | |
for i in range(n - 1, n - m, -1): | |
k *= i | |
deriv.append(K(k)*coeff) | |
n -= 1 | |
return dup_strip(deriv) | |
def dmp_diff(f, m, u, K): | |
""" | |
``m``-th order derivative in ``x_0`` of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1 | |
>>> R.dmp_diff(f, 1) | |
y**2 + 2*y + 3 | |
>>> R.dmp_diff(f, 2) | |
0 | |
""" | |
if not u: | |
return dup_diff(f, m, K) | |
if m <= 0: | |
return f | |
n = dmp_degree(f, u) | |
if n < m: | |
return dmp_zero(u) | |
deriv, v = [], u - 1 | |
if m == 1: | |
for coeff in f[:-m]: | |
deriv.append(dmp_mul_ground(coeff, K(n), v, K)) | |
n -= 1 | |
else: | |
for coeff in f[:-m]: | |
k = n | |
for i in range(n - 1, n - m, -1): | |
k *= i | |
deriv.append(dmp_mul_ground(coeff, K(k), v, K)) | |
n -= 1 | |
return dmp_strip(deriv, u) | |
def _rec_diff_in(g, m, v, i, j, K): | |
"""Recursive helper for :func:`dmp_diff_in`.""" | |
if i == j: | |
return dmp_diff(g, m, v, K) | |
w, i = v - 1, i + 1 | |
return dmp_strip([ _rec_diff_in(c, m, w, i, j, K) for c in g ], v) | |
def dmp_diff_in(f, m, j, u, K): | |
""" | |
``m``-th order derivative in ``x_j`` of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1 | |
>>> R.dmp_diff_in(f, 1, 0) | |
y**2 + 2*y + 3 | |
>>> R.dmp_diff_in(f, 1, 1) | |
2*x*y + 2*x + 4*y + 3 | |
""" | |
if j < 0 or j > u: | |
raise IndexError("0 <= j <= %s expected, got %s" % (u, j)) | |
return _rec_diff_in(f, m, u, 0, j, K) | |
def dup_eval(f, a, K): | |
""" | |
Evaluate a polynomial at ``x = a`` in ``K[x]`` using Horner scheme. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_eval(x**2 + 2*x + 3, 2) | |
11 | |
""" | |
if not a: | |
return K.convert(dup_TC(f, K)) | |
result = K.zero | |
for c in f: | |
result *= a | |
result += c | |
return result | |
def dmp_eval(f, a, u, K): | |
""" | |
Evaluate a polynomial at ``x_0 = a`` in ``K[X]`` using the Horner scheme. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_eval(2*x*y + 3*x + y + 2, 2) | |
5*y + 8 | |
""" | |
if not u: | |
return dup_eval(f, a, K) | |
if not a: | |
return dmp_TC(f, K) | |
result, v = dmp_LC(f, K), u - 1 | |
for coeff in f[1:]: | |
result = dmp_mul_ground(result, a, v, K) | |
result = dmp_add(result, coeff, v, K) | |
return result | |
def _rec_eval_in(g, a, v, i, j, K): | |
"""Recursive helper for :func:`dmp_eval_in`.""" | |
if i == j: | |
return dmp_eval(g, a, v, K) | |
v, i = v - 1, i + 1 | |
return dmp_strip([ _rec_eval_in(c, a, v, i, j, K) for c in g ], v) | |
def dmp_eval_in(f, a, j, u, K): | |
""" | |
Evaluate a polynomial at ``x_j = a`` in ``K[X]`` using the Horner scheme. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 2*x*y + 3*x + y + 2 | |
>>> R.dmp_eval_in(f, 2, 0) | |
5*y + 8 | |
>>> R.dmp_eval_in(f, 2, 1) | |
7*x + 4 | |
""" | |
if j < 0 or j > u: | |
raise IndexError("0 <= j <= %s expected, got %s" % (u, j)) | |
return _rec_eval_in(f, a, u, 0, j, K) | |
def _rec_eval_tail(g, i, A, u, K): | |
"""Recursive helper for :func:`dmp_eval_tail`.""" | |
if i == u: | |
return dup_eval(g, A[-1], K) | |
else: | |
h = [ _rec_eval_tail(c, i + 1, A, u, K) for c in g ] | |
if i < u - len(A) + 1: | |
return h | |
else: | |
return dup_eval(h, A[-u + i - 1], K) | |
def dmp_eval_tail(f, A, u, K): | |
""" | |
Evaluate a polynomial at ``x_j = a_j, ...`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 2*x*y + 3*x + y + 2 | |
>>> R.dmp_eval_tail(f, [2]) | |
7*x + 4 | |
>>> R.dmp_eval_tail(f, [2, 2]) | |
18 | |
""" | |
if not A: | |
return f | |
if dmp_zero_p(f, u): | |
return dmp_zero(u - len(A)) | |
e = _rec_eval_tail(f, 0, A, u, K) | |
if u == len(A) - 1: | |
return e | |
else: | |
return dmp_strip(e, u - len(A)) | |
def _rec_diff_eval(g, m, a, v, i, j, K): | |
"""Recursive helper for :func:`dmp_diff_eval`.""" | |
if i == j: | |
return dmp_eval(dmp_diff(g, m, v, K), a, v, K) | |
v, i = v - 1, i + 1 | |
return dmp_strip([ _rec_diff_eval(c, m, a, v, i, j, K) for c in g ], v) | |
def dmp_diff_eval_in(f, m, a, j, u, K): | |
""" | |
Differentiate and evaluate a polynomial in ``x_j`` at ``a`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x*y**2 + 2*x*y + 3*x + 2*y**2 + 3*y + 1 | |
>>> R.dmp_diff_eval_in(f, 1, 2, 0) | |
y**2 + 2*y + 3 | |
>>> R.dmp_diff_eval_in(f, 1, 2, 1) | |
6*x + 11 | |
""" | |
if j > u: | |
raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j)) | |
if not j: | |
return dmp_eval(dmp_diff(f, m, u, K), a, u, K) | |
return _rec_diff_eval(f, m, a, u, 0, j, K) | |
def dup_trunc(f, p, K): | |
""" | |
Reduce a ``K[x]`` polynomial modulo a constant ``p`` in ``K``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_trunc(2*x**3 + 3*x**2 + 5*x + 7, ZZ(3)) | |
-x**3 - x + 1 | |
""" | |
if K.is_ZZ: | |
g = [] | |
for c in f: | |
c = c % p | |
if c > p // 2: | |
g.append(c - p) | |
else: | |
g.append(c) | |
elif K.is_FiniteField: | |
# XXX: python-flint's nmod does not support % | |
pi = int(p) | |
g = [ K(int(c) % pi) for c in f ] | |
else: | |
g = [ c % p for c in f ] | |
return dup_strip(g) | |
def dmp_trunc(f, p, u, K): | |
""" | |
Reduce a ``K[X]`` polynomial modulo a polynomial ``p`` in ``K[Y]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3 | |
>>> g = (y - 1).drop(x) | |
>>> R.dmp_trunc(f, g) | |
11*x**2 + 11*x + 5 | |
""" | |
return dmp_strip([ dmp_rem(c, p, u - 1, K) for c in f ], u) | |
def dmp_ground_trunc(f, p, u, K): | |
""" | |
Reduce a ``K[X]`` polynomial modulo a constant ``p`` in ``K``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3 | |
>>> R.dmp_ground_trunc(f, ZZ(3)) | |
-x**2 - x*y - y | |
""" | |
if not u: | |
return dup_trunc(f, p, K) | |
v = u - 1 | |
return dmp_strip([ dmp_ground_trunc(c, p, v, K) for c in f ], u) | |
def dup_monic(f, K): | |
""" | |
Divide all coefficients by ``LC(f)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_monic(3*x**2 + 6*x + 9) | |
x**2 + 2*x + 3 | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_monic(3*x**2 + 4*x + 2) | |
x**2 + 4/3*x + 2/3 | |
""" | |
if not f: | |
return f | |
lc = dup_LC(f, K) | |
if K.is_one(lc): | |
return f | |
else: | |
return dup_exquo_ground(f, lc, K) | |
def dmp_ground_monic(f, u, K): | |
""" | |
Divide all coefficients by ``LC(f)`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 3*x**2*y + 6*x**2 + 3*x*y + 9*y + 3 | |
>>> R.dmp_ground_monic(f) | |
x**2*y + 2*x**2 + x*y + 3*y + 1 | |
>>> R, x,y = ring("x,y", QQ) | |
>>> f = 3*x**2*y + 8*x**2 + 5*x*y + 6*x + 2*y + 3 | |
>>> R.dmp_ground_monic(f) | |
x**2*y + 8/3*x**2 + 5/3*x*y + 2*x + 2/3*y + 1 | |
""" | |
if not u: | |
return dup_monic(f, K) | |
if dmp_zero_p(f, u): | |
return f | |
lc = dmp_ground_LC(f, u, K) | |
if K.is_one(lc): | |
return f | |
else: | |
return dmp_exquo_ground(f, lc, u, K) | |
def dup_content(f, K): | |
""" | |
Compute the GCD of coefficients of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 6*x**2 + 8*x + 12 | |
>>> R.dup_content(f) | |
2 | |
>>> R, x = ring("x", QQ) | |
>>> f = 6*x**2 + 8*x + 12 | |
>>> R.dup_content(f) | |
2 | |
""" | |
from sympy.polys.domains import QQ | |
if not f: | |
return K.zero | |
cont = K.zero | |
if K == QQ: | |
for c in f: | |
cont = K.gcd(cont, c) | |
else: | |
for c in f: | |
cont = K.gcd(cont, c) | |
if K.is_one(cont): | |
break | |
return cont | |
def dmp_ground_content(f, u, K): | |
""" | |
Compute the GCD of coefficients of ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 2*x*y + 6*x + 4*y + 12 | |
>>> R.dmp_ground_content(f) | |
2 | |
>>> R, x,y = ring("x,y", QQ) | |
>>> f = 2*x*y + 6*x + 4*y + 12 | |
>>> R.dmp_ground_content(f) | |
2 | |
""" | |
from sympy.polys.domains import QQ | |
if not u: | |
return dup_content(f, K) | |
if dmp_zero_p(f, u): | |
return K.zero | |
cont, v = K.zero, u - 1 | |
if K == QQ: | |
for c in f: | |
cont = K.gcd(cont, dmp_ground_content(c, v, K)) | |
else: | |
for c in f: | |
cont = K.gcd(cont, dmp_ground_content(c, v, K)) | |
if K.is_one(cont): | |
break | |
return cont | |
def dup_primitive(f, K): | |
""" | |
Compute content and the primitive form of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> f = 6*x**2 + 8*x + 12 | |
>>> R.dup_primitive(f) | |
(2, 3*x**2 + 4*x + 6) | |
>>> R, x = ring("x", QQ) | |
>>> f = 6*x**2 + 8*x + 12 | |
>>> R.dup_primitive(f) | |
(2, 3*x**2 + 4*x + 6) | |
""" | |
if not f: | |
return K.zero, f | |
cont = dup_content(f, K) | |
if K.is_one(cont): | |
return cont, f | |
else: | |
return cont, dup_quo_ground(f, cont, K) | |
def dmp_ground_primitive(f, u, K): | |
""" | |
Compute content and the primitive form of ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = 2*x*y + 6*x + 4*y + 12 | |
>>> R.dmp_ground_primitive(f) | |
(2, x*y + 3*x + 2*y + 6) | |
>>> R, x,y = ring("x,y", QQ) | |
>>> f = 2*x*y + 6*x + 4*y + 12 | |
>>> R.dmp_ground_primitive(f) | |
(2, x*y + 3*x + 2*y + 6) | |
""" | |
if not u: | |
return dup_primitive(f, K) | |
if dmp_zero_p(f, u): | |
return K.zero, f | |
cont = dmp_ground_content(f, u, K) | |
if K.is_one(cont): | |
return cont, f | |
else: | |
return cont, dmp_quo_ground(f, cont, u, K) | |
def dup_extract(f, g, K): | |
""" | |
Extract common content from a pair of polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_extract(6*x**2 + 12*x + 18, 4*x**2 + 8*x + 12) | |
(2, 3*x**2 + 6*x + 9, 2*x**2 + 4*x + 6) | |
""" | |
fc = dup_content(f, K) | |
gc = dup_content(g, K) | |
gcd = K.gcd(fc, gc) | |
if not K.is_one(gcd): | |
f = dup_quo_ground(f, gcd, K) | |
g = dup_quo_ground(g, gcd, K) | |
return gcd, f, g | |
def dmp_ground_extract(f, g, u, K): | |
""" | |
Extract common content from a pair of polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_ground_extract(6*x*y + 12*x + 18, 4*x*y + 8*x + 12) | |
(2, 3*x*y + 6*x + 9, 2*x*y + 4*x + 6) | |
""" | |
fc = dmp_ground_content(f, u, K) | |
gc = dmp_ground_content(g, u, K) | |
gcd = K.gcd(fc, gc) | |
if not K.is_one(gcd): | |
f = dmp_quo_ground(f, gcd, u, K) | |
g = dmp_quo_ground(g, gcd, u, K) | |
return gcd, f, g | |
def dup_real_imag(f, K): | |
""" | |
Find ``f1`` and ``f2``, such that ``f(x+I*y) = f1(x,y) + f2(x,y)*I``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dup_real_imag(x**3 + x**2 + x + 1) | |
(x**3 + x**2 - 3*x*y**2 + x - y**2 + 1, 3*x**2*y + 2*x*y - y**3 + y) | |
>>> from sympy.abc import x, y, z | |
>>> from sympy import I | |
>>> (z**3 + z**2 + z + 1).subs(z, x+I*y).expand().collect(I) | |
x**3 + x**2 - 3*x*y**2 + x - y**2 + I*(3*x**2*y + 2*x*y - y**3 + y) + 1 | |
""" | |
if not K.is_ZZ and not K.is_QQ: | |
raise DomainError("computing real and imaginary parts is not supported over %s" % K) | |
f1 = dmp_zero(1) | |
f2 = dmp_zero(1) | |
if not f: | |
return f1, f2 | |
g = [[[K.one, K.zero]], [[K.one], []]] | |
h = dmp_ground(f[0], 2) | |
for c in f[1:]: | |
h = dmp_mul(h, g, 2, K) | |
h = dmp_add_term(h, dmp_ground(c, 1), 0, 2, K) | |
H = dup_to_raw_dict(h) | |
for k, h in H.items(): | |
m = k % 4 | |
if not m: | |
f1 = dmp_add(f1, h, 1, K) | |
elif m == 1: | |
f2 = dmp_add(f2, h, 1, K) | |
elif m == 2: | |
f1 = dmp_sub(f1, h, 1, K) | |
else: | |
f2 = dmp_sub(f2, h, 1, K) | |
return f1, f2 | |
def dup_mirror(f, K): | |
""" | |
Evaluate efficiently the composition ``f(-x)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_mirror(x**3 + 2*x**2 - 4*x + 2) | |
-x**3 + 2*x**2 + 4*x + 2 | |
""" | |
f = list(f) | |
for i in range(len(f) - 2, -1, -2): | |
f[i] = -f[i] | |
return f | |
def dup_scale(f, a, K): | |
""" | |
Evaluate efficiently composition ``f(a*x)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_scale(x**2 - 2*x + 1, ZZ(2)) | |
4*x**2 - 4*x + 1 | |
""" | |
f, n, b = list(f), len(f) - 1, a | |
for i in range(n - 1, -1, -1): | |
f[i], b = b*f[i], b*a | |
return f | |
def dup_shift(f, a, K): | |
""" | |
Evaluate efficiently Taylor shift ``f(x + a)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_shift(x**2 - 2*x + 1, ZZ(2)) | |
x**2 + 2*x + 1 | |
""" | |
f, n = list(f), len(f) - 1 | |
for i in range(n, 0, -1): | |
for j in range(0, i): | |
f[j + 1] += a*f[j] | |
return f | |
def dmp_shift(f, a, u, K): | |
""" | |
Evaluate efficiently Taylor shift ``f(X + A)`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy import symbols, ring, ZZ | |
>>> x, y = symbols('x y') | |
>>> R, _, _ = ring([x, y], ZZ) | |
>>> p = x**2*y + 2*x*y + 3*x + 4*y + 5 | |
>>> R.dmp_shift(R(p), [ZZ(1), ZZ(2)]) | |
x**2*y + 2*x**2 + 4*x*y + 11*x + 7*y + 22 | |
>>> p.subs({x: x + 1, y: y + 2}).expand() | |
x**2*y + 2*x**2 + 4*x*y + 11*x + 7*y + 22 | |
""" | |
if not u: | |
return dup_shift(f, a[0], K) | |
if dmp_zero_p(f, u): | |
return f | |
a0, a1 = a[0], a[1:] | |
f = [ dmp_shift(c, a1, u-1, K) for c in f ] | |
n = len(f) - 1 | |
for i in range(n, 0, -1): | |
for j in range(0, i): | |
afj = dmp_mul_ground(f[j], a0, u-1, K) | |
f[j + 1] = dmp_add(f[j + 1], afj, u-1, K) | |
return f | |
def dup_transform(f, p, q, K): | |
""" | |
Evaluate functional transformation ``q**n * f(p/q)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_transform(x**2 - 2*x + 1, x**2 + 1, x - 1) | |
x**4 - 2*x**3 + 5*x**2 - 4*x + 4 | |
""" | |
if not f: | |
return [] | |
n = len(f) - 1 | |
h, Q = [f[0]], [[K.one]] | |
for i in range(0, n): | |
Q.append(dup_mul(Q[-1], q, K)) | |
for c, q in zip(f[1:], Q[1:]): | |
h = dup_mul(h, p, K) | |
q = dup_mul_ground(q, c, K) | |
h = dup_add(h, q, K) | |
return h | |
def dup_compose(f, g, K): | |
""" | |
Evaluate functional composition ``f(g)`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_compose(x**2 + x, x - 1) | |
x**2 - x | |
""" | |
if len(g) <= 1: | |
return dup_strip([dup_eval(f, dup_LC(g, K), K)]) | |
if not f: | |
return [] | |
h = [f[0]] | |
for c in f[1:]: | |
h = dup_mul(h, g, K) | |
h = dup_add_term(h, c, 0, K) | |
return h | |
def dmp_compose(f, g, u, K): | |
""" | |
Evaluate functional composition ``f(g)`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_compose(x*y + 2*x + y, y) | |
y**2 + 3*y | |
""" | |
if not u: | |
return dup_compose(f, g, K) | |
if dmp_zero_p(f, u): | |
return f | |
h = [f[0]] | |
for c in f[1:]: | |
h = dmp_mul(h, g, u, K) | |
h = dmp_add_term(h, c, 0, u, K) | |
return h | |
def _dup_right_decompose(f, s, K): | |
"""Helper function for :func:`_dup_decompose`.""" | |
n = len(f) - 1 | |
lc = dup_LC(f, K) | |
f = dup_to_raw_dict(f) | |
g = { s: K.one } | |
r = n // s | |
for i in range(1, s): | |
coeff = K.zero | |
for j in range(0, i): | |
if not n + j - i in f: | |
continue | |
if not s - j in g: | |
continue | |
fc, gc = f[n + j - i], g[s - j] | |
coeff += (i - r*j)*fc*gc | |
g[s - i] = K.quo(coeff, i*r*lc) | |
return dup_from_raw_dict(g, K) | |
def _dup_left_decompose(f, h, K): | |
"""Helper function for :func:`_dup_decompose`.""" | |
g, i = {}, 0 | |
while f: | |
q, r = dup_div(f, h, K) | |
if dup_degree(r) > 0: | |
return None | |
else: | |
g[i] = dup_LC(r, K) | |
f, i = q, i + 1 | |
return dup_from_raw_dict(g, K) | |
def _dup_decompose(f, K): | |
"""Helper function for :func:`dup_decompose`.""" | |
df = len(f) - 1 | |
for s in range(2, df): | |
if df % s != 0: | |
continue | |
h = _dup_right_decompose(f, s, K) | |
if h is not None: | |
g = _dup_left_decompose(f, h, K) | |
if g is not None: | |
return g, h | |
return None | |
def dup_decompose(f, K): | |
""" | |
Computes functional decomposition of ``f`` in ``K[x]``. | |
Given a univariate polynomial ``f`` with coefficients in a field of | |
characteristic zero, returns list ``[f_1, f_2, ..., f_n]``, where:: | |
f = f_1 o f_2 o ... f_n = f_1(f_2(... f_n)) | |
and ``f_2, ..., f_n`` are monic and homogeneous polynomials of at | |
least second degree. | |
Unlike factorization, complete functional decompositions of | |
polynomials are not unique, consider examples: | |
1. ``f o g = f(x + b) o (g - b)`` | |
2. ``x**n o x**m = x**m o x**n`` | |
3. ``T_n o T_m = T_m o T_n`` | |
where ``T_n`` and ``T_m`` are Chebyshev polynomials. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_decompose(x**4 - 2*x**3 + x**2) | |
[x**2, x**2 - x] | |
References | |
========== | |
.. [1] [Kozen89]_ | |
""" | |
F = [] | |
while True: | |
result = _dup_decompose(f, K) | |
if result is not None: | |
f, h = result | |
F = [h] + F | |
else: | |
break | |
return [f] + F | |
def dmp_lift(f, u, K): | |
""" | |
Convert algebraic coefficients to integers in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> from sympy import I | |
>>> K = QQ.algebraic_field(I) | |
>>> R, x = ring("x", K) | |
>>> f = x**2 + K([QQ(1), QQ(0)])*x + K([QQ(2), QQ(0)]) | |
>>> R.dmp_lift(f) | |
x**8 + 2*x**6 + 9*x**4 - 8*x**2 + 16 | |
""" | |
if K.is_GaussianField: | |
K1 = K.as_AlgebraicField() | |
f = dmp_convert(f, u, K, K1) | |
K = K1 | |
if not K.is_Algebraic: | |
raise DomainError( | |
'computation can be done only in an algebraic domain') | |
F, monoms, polys = dmp_to_dict(f, u), [], [] | |
for monom, coeff in F.items(): | |
if not coeff.is_ground: | |
monoms.append(monom) | |
perms = variations([-1, 1], len(monoms), repetition=True) | |
for perm in perms: | |
G = dict(F) | |
for sign, monom in zip(perm, monoms): | |
if sign == -1: | |
G[monom] = -G[monom] | |
polys.append(dmp_from_dict(G, u, K)) | |
return dmp_convert(dmp_expand(polys, u, K), u, K, K.dom) | |
def dup_sign_variations(f, K): | |
""" | |
Compute the number of sign variations of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sign_variations(x**4 - x**2 - x + 1) | |
2 | |
""" | |
prev, k = K.zero, 0 | |
for coeff in f: | |
if K.is_negative(coeff*prev): | |
k += 1 | |
if coeff: | |
prev = coeff | |
return k | |
def dup_clear_denoms(f, K0, K1=None, convert=False): | |
""" | |
Clear denominators, i.e. transform ``K_0`` to ``K_1``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> f = QQ(1,2)*x + QQ(1,3) | |
>>> R.dup_clear_denoms(f, convert=False) | |
(6, 3*x + 2) | |
>>> R.dup_clear_denoms(f, convert=True) | |
(6, 3*x + 2) | |
""" | |
if K1 is None: | |
if K0.has_assoc_Ring: | |
K1 = K0.get_ring() | |
else: | |
K1 = K0 | |
common = K1.one | |
for c in f: | |
common = K1.lcm(common, K0.denom(c)) | |
if K1.is_one(common): | |
if not convert: | |
return common, f | |
else: | |
return common, dup_convert(f, K0, K1) | |
# Use quo rather than exquo to handle inexact domains by discarding the | |
# remainder. | |
f = [K0.numer(c)*K1.quo(common, K0.denom(c)) for c in f] | |
if not convert: | |
return common, dup_convert(f, K1, K0) | |
else: | |
return common, f | |
def _rec_clear_denoms(g, v, K0, K1): | |
"""Recursive helper for :func:`dmp_clear_denoms`.""" | |
common = K1.one | |
if not v: | |
for c in g: | |
common = K1.lcm(common, K0.denom(c)) | |
else: | |
w = v - 1 | |
for c in g: | |
common = K1.lcm(common, _rec_clear_denoms(c, w, K0, K1)) | |
return common | |
def dmp_clear_denoms(f, u, K0, K1=None, convert=False): | |
""" | |
Clear denominators, i.e. transform ``K_0`` to ``K_1``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
>>> f = QQ(1,2)*x + QQ(1,3)*y + 1 | |
>>> R.dmp_clear_denoms(f, convert=False) | |
(6, 3*x + 2*y + 6) | |
>>> R.dmp_clear_denoms(f, convert=True) | |
(6, 3*x + 2*y + 6) | |
""" | |
if not u: | |
return dup_clear_denoms(f, K0, K1, convert=convert) | |
if K1 is None: | |
if K0.has_assoc_Ring: | |
K1 = K0.get_ring() | |
else: | |
K1 = K0 | |
common = _rec_clear_denoms(f, u, K0, K1) | |
if not K1.is_one(common): | |
f = dmp_mul_ground(f, common, u, K0) | |
if not convert: | |
return common, f | |
else: | |
return common, dmp_convert(f, u, K0, K1) | |
def dup_revert(f, n, K): | |
""" | |
Compute ``f**(-1)`` mod ``x**n`` using Newton iteration. | |
This function computes first ``2**n`` terms of a polynomial that | |
is a result of inversion of a polynomial modulo ``x**n``. This is | |
useful to efficiently compute series expansion of ``1/f``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> f = -QQ(1,720)*x**6 + QQ(1,24)*x**4 - QQ(1,2)*x**2 + 1 | |
>>> R.dup_revert(f, 8) | |
61/720*x**6 + 5/24*x**4 + 1/2*x**2 + 1 | |
""" | |
g = [K.revert(dup_TC(f, K))] | |
h = [K.one, K.zero, K.zero] | |
N = int(_ceil(_log2(n))) | |
for i in range(1, N + 1): | |
a = dup_mul_ground(g, K(2), K) | |
b = dup_mul(f, dup_sqr(g, K), K) | |
g = dup_rem(dup_sub(a, b, K), h, K) | |
h = dup_lshift(h, dup_degree(h), K) | |
return g | |
def dmp_revert(f, g, u, K): | |
""" | |
Compute ``f**(-1)`` mod ``x**n`` using Newton iteration. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
""" | |
if not u: | |
return dup_revert(f, g, K) | |
else: | |
raise MultivariatePolynomialError(f, g) | |