Spaces:
Running
Running
"""Basic tools for dense recursive polynomials in ``K[x]`` or ``K[X]``. """ | |
from sympy.core import igcd | |
from sympy.polys.monomials import monomial_min, monomial_div | |
from sympy.polys.orderings import monomial_key | |
import random | |
ninf = float('-inf') | |
def poly_LC(f, K): | |
""" | |
Return leading coefficient of ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import poly_LC | |
>>> poly_LC([], ZZ) | |
0 | |
>>> poly_LC([ZZ(1), ZZ(2), ZZ(3)], ZZ) | |
1 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return f[0] | |
def poly_TC(f, K): | |
""" | |
Return trailing coefficient of ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import poly_TC | |
>>> poly_TC([], ZZ) | |
0 | |
>>> poly_TC([ZZ(1), ZZ(2), ZZ(3)], ZZ) | |
3 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return f[-1] | |
dup_LC = dmp_LC = poly_LC | |
dup_TC = dmp_TC = poly_TC | |
def dmp_ground_LC(f, u, K): | |
""" | |
Return the ground leading coefficient. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_ground_LC | |
>>> f = ZZ.map([[[1], [2, 3]]]) | |
>>> dmp_ground_LC(f, 2, ZZ) | |
1 | |
""" | |
while u: | |
f = dmp_LC(f, K) | |
u -= 1 | |
return dup_LC(f, K) | |
def dmp_ground_TC(f, u, K): | |
""" | |
Return the ground trailing coefficient. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_ground_TC | |
>>> f = ZZ.map([[[1], [2, 3]]]) | |
>>> dmp_ground_TC(f, 2, ZZ) | |
3 | |
""" | |
while u: | |
f = dmp_TC(f, K) | |
u -= 1 | |
return dup_TC(f, K) | |
def dmp_true_LT(f, u, K): | |
""" | |
Return the leading term ``c * x_1**n_1 ... x_k**n_k``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_true_LT | |
>>> f = ZZ.map([[4], [2, 0], [3, 0, 0]]) | |
>>> dmp_true_LT(f, 1, ZZ) | |
((2, 0), 4) | |
""" | |
monom = [] | |
while u: | |
monom.append(len(f) - 1) | |
f, u = f[0], u - 1 | |
if not f: | |
monom.append(0) | |
else: | |
monom.append(len(f) - 1) | |
return tuple(monom), dup_LC(f, K) | |
def dup_degree(f): | |
""" | |
Return the leading degree of ``f`` in ``K[x]``. | |
Note that the degree of 0 is negative infinity (``float('-inf')``). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_degree | |
>>> f = ZZ.map([1, 2, 0, 3]) | |
>>> dup_degree(f) | |
3 | |
""" | |
if not f: | |
return ninf | |
return len(f) - 1 | |
def dmp_degree(f, u): | |
""" | |
Return the leading degree of ``f`` in ``x_0`` in ``K[X]``. | |
Note that the degree of 0 is negative infinity (``float('-inf')``). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_degree | |
>>> dmp_degree([[[]]], 2) | |
-inf | |
>>> f = ZZ.map([[2], [1, 2, 3]]) | |
>>> dmp_degree(f, 1) | |
1 | |
""" | |
if dmp_zero_p(f, u): | |
return ninf | |
else: | |
return len(f) - 1 | |
def _rec_degree_in(g, v, i, j): | |
"""Recursive helper function for :func:`dmp_degree_in`.""" | |
if i == j: | |
return dmp_degree(g, v) | |
v, i = v - 1, i + 1 | |
return max(_rec_degree_in(c, v, i, j) for c in g) | |
def dmp_degree_in(f, j, u): | |
""" | |
Return the leading degree of ``f`` in ``x_j`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_degree_in | |
>>> f = ZZ.map([[2], [1, 2, 3]]) | |
>>> dmp_degree_in(f, 0, 1) | |
1 | |
>>> dmp_degree_in(f, 1, 1) | |
2 | |
""" | |
if not j: | |
return dmp_degree(f, u) | |
if j < 0 or j > u: | |
raise IndexError("0 <= j <= %s expected, got %s" % (u, j)) | |
return _rec_degree_in(f, u, 0, j) | |
def _rec_degree_list(g, v, i, degs): | |
"""Recursive helper for :func:`dmp_degree_list`.""" | |
degs[i] = max(degs[i], dmp_degree(g, v)) | |
if v > 0: | |
v, i = v - 1, i + 1 | |
for c in g: | |
_rec_degree_list(c, v, i, degs) | |
def dmp_degree_list(f, u): | |
""" | |
Return a list of degrees of ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_degree_list | |
>>> f = ZZ.map([[1], [1, 2, 3]]) | |
>>> dmp_degree_list(f, 1) | |
(1, 2) | |
""" | |
degs = [ninf]*(u + 1) | |
_rec_degree_list(f, u, 0, degs) | |
return tuple(degs) | |
def dup_strip(f): | |
""" | |
Remove leading zeros from ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dup_strip | |
>>> dup_strip([0, 0, 1, 2, 3, 0]) | |
[1, 2, 3, 0] | |
""" | |
if not f or f[0]: | |
return f | |
i = 0 | |
for cf in f: | |
if cf: | |
break | |
else: | |
i += 1 | |
return f[i:] | |
def dmp_strip(f, u): | |
""" | |
Remove leading zeros from ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_strip | |
>>> dmp_strip([[], [0, 1, 2], [1]], 1) | |
[[0, 1, 2], [1]] | |
""" | |
if not u: | |
return dup_strip(f) | |
if dmp_zero_p(f, u): | |
return f | |
i, v = 0, u - 1 | |
for c in f: | |
if not dmp_zero_p(c, v): | |
break | |
else: | |
i += 1 | |
if i == len(f): | |
return dmp_zero(u) | |
else: | |
return f[i:] | |
def _rec_validate(f, g, i, K): | |
"""Recursive helper for :func:`dmp_validate`.""" | |
if not isinstance(g, list): | |
if K is not None and not K.of_type(g): | |
raise TypeError("%s in %s in not of type %s" % (g, f, K.dtype)) | |
return {i - 1} | |
elif not g: | |
return {i} | |
else: | |
levels = set() | |
for c in g: | |
levels |= _rec_validate(f, c, i + 1, K) | |
return levels | |
def _rec_strip(g, v): | |
"""Recursive helper for :func:`_rec_strip`.""" | |
if not v: | |
return dup_strip(g) | |
w = v - 1 | |
return dmp_strip([ _rec_strip(c, w) for c in g ], v) | |
def dmp_validate(f, K=None): | |
""" | |
Return the number of levels in ``f`` and recursively strip it. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_validate | |
>>> dmp_validate([[], [0, 1, 2], [1]]) | |
([[1, 2], [1]], 1) | |
>>> dmp_validate([[1], 1]) | |
Traceback (most recent call last): | |
... | |
ValueError: invalid data structure for a multivariate polynomial | |
""" | |
levels = _rec_validate(f, f, 0, K) | |
u = levels.pop() | |
if not levels: | |
return _rec_strip(f, u), u | |
else: | |
raise ValueError( | |
"invalid data structure for a multivariate polynomial") | |
def dup_reverse(f): | |
""" | |
Compute ``x**n * f(1/x)``, i.e.: reverse ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_reverse | |
>>> f = ZZ.map([1, 2, 3, 0]) | |
>>> dup_reverse(f) | |
[3, 2, 1] | |
""" | |
return dup_strip(list(reversed(f))) | |
def dup_copy(f): | |
""" | |
Create a new copy of a polynomial ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_copy | |
>>> f = ZZ.map([1, 2, 3, 0]) | |
>>> dup_copy([1, 2, 3, 0]) | |
[1, 2, 3, 0] | |
""" | |
return list(f) | |
def dmp_copy(f, u): | |
""" | |
Create a new copy of a polynomial ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_copy | |
>>> f = ZZ.map([[1], [1, 2]]) | |
>>> dmp_copy(f, 1) | |
[[1], [1, 2]] | |
""" | |
if not u: | |
return list(f) | |
v = u - 1 | |
return [ dmp_copy(c, v) for c in f ] | |
def dup_to_tuple(f): | |
""" | |
Convert `f` into a tuple. | |
This is needed for hashing. This is similar to dup_copy(). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_copy | |
>>> f = ZZ.map([1, 2, 3, 0]) | |
>>> dup_copy([1, 2, 3, 0]) | |
[1, 2, 3, 0] | |
""" | |
return tuple(f) | |
def dmp_to_tuple(f, u): | |
""" | |
Convert `f` into a nested tuple of tuples. | |
This is needed for hashing. This is similar to dmp_copy(). | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_to_tuple | |
>>> f = ZZ.map([[1], [1, 2]]) | |
>>> dmp_to_tuple(f, 1) | |
((1,), (1, 2)) | |
""" | |
if not u: | |
return tuple(f) | |
v = u - 1 | |
return tuple(dmp_to_tuple(c, v) for c in f) | |
def dup_normal(f, K): | |
""" | |
Normalize univariate polynomial in the given domain. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_normal | |
>>> dup_normal([0, 1, 2, 3], ZZ) | |
[1, 2, 3] | |
""" | |
return dup_strip([ K.normal(c) for c in f ]) | |
def dmp_normal(f, u, K): | |
""" | |
Normalize a multivariate polynomial in the given domain. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_normal | |
>>> dmp_normal([[], [0, 1, 2]], 1, ZZ) | |
[[1, 2]] | |
""" | |
if not u: | |
return dup_normal(f, K) | |
v = u - 1 | |
return dmp_strip([ dmp_normal(c, v, K) for c in f ], u) | |
def dup_convert(f, K0, K1): | |
""" | |
Convert the ground domain of ``f`` from ``K0`` to ``K1``. | |
Examples | |
======== | |
>>> from sympy.polys.rings import ring | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_convert | |
>>> R, x = ring("x", ZZ) | |
>>> dup_convert([R(1), R(2)], R.to_domain(), ZZ) | |
[1, 2] | |
>>> dup_convert([ZZ(1), ZZ(2)], ZZ, R.to_domain()) | |
[1, 2] | |
""" | |
if K0 is not None and K0 == K1: | |
return f | |
else: | |
return dup_strip([ K1.convert(c, K0) for c in f ]) | |
def dmp_convert(f, u, K0, K1): | |
""" | |
Convert the ground domain of ``f`` from ``K0`` to ``K1``. | |
Examples | |
======== | |
>>> from sympy.polys.rings import ring | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_convert | |
>>> R, x = ring("x", ZZ) | |
>>> dmp_convert([[R(1)], [R(2)]], 1, R.to_domain(), ZZ) | |
[[1], [2]] | |
>>> dmp_convert([[ZZ(1)], [ZZ(2)]], 1, ZZ, R.to_domain()) | |
[[1], [2]] | |
""" | |
if not u: | |
return dup_convert(f, K0, K1) | |
if K0 is not None and K0 == K1: | |
return f | |
v = u - 1 | |
return dmp_strip([ dmp_convert(c, v, K0, K1) for c in f ], u) | |
def dup_from_sympy(f, K): | |
""" | |
Convert the ground domain of ``f`` from SymPy to ``K``. | |
Examples | |
======== | |
>>> from sympy import S | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_from_sympy | |
>>> dup_from_sympy([S(1), S(2)], ZZ) == [ZZ(1), ZZ(2)] | |
True | |
""" | |
return dup_strip([ K.from_sympy(c) for c in f ]) | |
def dmp_from_sympy(f, u, K): | |
""" | |
Convert the ground domain of ``f`` from SymPy to ``K``. | |
Examples | |
======== | |
>>> from sympy import S | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_from_sympy | |
>>> dmp_from_sympy([[S(1)], [S(2)]], 1, ZZ) == [[ZZ(1)], [ZZ(2)]] | |
True | |
""" | |
if not u: | |
return dup_from_sympy(f, K) | |
v = u - 1 | |
return dmp_strip([ dmp_from_sympy(c, v, K) for c in f ], u) | |
def dup_nth(f, n, K): | |
""" | |
Return the ``n``-th coefficient of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_nth | |
>>> f = ZZ.map([1, 2, 3]) | |
>>> dup_nth(f, 0, ZZ) | |
3 | |
>>> dup_nth(f, 4, ZZ) | |
0 | |
""" | |
if n < 0: | |
raise IndexError("'n' must be non-negative, got %i" % n) | |
elif n >= len(f): | |
return K.zero | |
else: | |
return f[dup_degree(f) - n] | |
def dmp_nth(f, n, u, K): | |
""" | |
Return the ``n``-th coefficient of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_nth | |
>>> f = ZZ.map([[1], [2], [3]]) | |
>>> dmp_nth(f, 0, 1, ZZ) | |
[3] | |
>>> dmp_nth(f, 4, 1, ZZ) | |
[] | |
""" | |
if n < 0: | |
raise IndexError("'n' must be non-negative, got %i" % n) | |
elif n >= len(f): | |
return dmp_zero(u - 1) | |
else: | |
return f[dmp_degree(f, u) - n] | |
def dmp_ground_nth(f, N, u, K): | |
""" | |
Return the ground ``n``-th coefficient of ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_ground_nth | |
>>> f = ZZ.map([[1], [2, 3]]) | |
>>> dmp_ground_nth(f, (0, 1), 1, ZZ) | |
2 | |
""" | |
v = u | |
for n in N: | |
if n < 0: | |
raise IndexError("`n` must be non-negative, got %i" % n) | |
elif n >= len(f): | |
return K.zero | |
else: | |
d = dmp_degree(f, v) | |
if d == ninf: | |
d = -1 | |
f, v = f[d - n], v - 1 | |
return f | |
def dmp_zero_p(f, u): | |
""" | |
Return ``True`` if ``f`` is zero in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_zero_p | |
>>> dmp_zero_p([[[[[]]]]], 4) | |
True | |
>>> dmp_zero_p([[[[[1]]]]], 4) | |
False | |
""" | |
while u: | |
if len(f) != 1: | |
return False | |
f = f[0] | |
u -= 1 | |
return not f | |
def dmp_zero(u): | |
""" | |
Return a multivariate zero. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_zero | |
>>> dmp_zero(4) | |
[[[[[]]]]] | |
""" | |
r = [] | |
for i in range(u): | |
r = [r] | |
return r | |
def dmp_one_p(f, u, K): | |
""" | |
Return ``True`` if ``f`` is one in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_one_p | |
>>> dmp_one_p([[[ZZ(1)]]], 2, ZZ) | |
True | |
""" | |
return dmp_ground_p(f, K.one, u) | |
def dmp_one(u, K): | |
""" | |
Return a multivariate one over ``K``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_one | |
>>> dmp_one(2, ZZ) | |
[[[1]]] | |
""" | |
return dmp_ground(K.one, u) | |
def dmp_ground_p(f, c, u): | |
""" | |
Return True if ``f`` is constant in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_ground_p | |
>>> dmp_ground_p([[[3]]], 3, 2) | |
True | |
>>> dmp_ground_p([[[4]]], None, 2) | |
True | |
""" | |
if c is not None and not c: | |
return dmp_zero_p(f, u) | |
while u: | |
if len(f) != 1: | |
return False | |
f = f[0] | |
u -= 1 | |
if c is None: | |
return len(f) <= 1 | |
else: | |
return f == [c] | |
def dmp_ground(c, u): | |
""" | |
Return a multivariate constant. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_ground | |
>>> dmp_ground(3, 5) | |
[[[[[[3]]]]]] | |
>>> dmp_ground(1, -1) | |
1 | |
""" | |
if not c: | |
return dmp_zero(u) | |
for i in range(u + 1): | |
c = [c] | |
return c | |
def dmp_zeros(n, u, K): | |
""" | |
Return a list of multivariate zeros. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_zeros | |
>>> dmp_zeros(3, 2, ZZ) | |
[[[[]]], [[[]]], [[[]]]] | |
>>> dmp_zeros(3, -1, ZZ) | |
[0, 0, 0] | |
""" | |
if not n: | |
return [] | |
if u < 0: | |
return [K.zero]*n | |
else: | |
return [ dmp_zero(u) for i in range(n) ] | |
def dmp_grounds(c, n, u): | |
""" | |
Return a list of multivariate constants. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_grounds | |
>>> dmp_grounds(ZZ(4), 3, 2) | |
[[[[4]]], [[[4]]], [[[4]]]] | |
>>> dmp_grounds(ZZ(4), 3, -1) | |
[4, 4, 4] | |
""" | |
if not n: | |
return [] | |
if u < 0: | |
return [c]*n | |
else: | |
return [ dmp_ground(c, u) for i in range(n) ] | |
def dmp_negative_p(f, u, K): | |
""" | |
Return ``True`` if ``LC(f)`` is negative. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_negative_p | |
>>> dmp_negative_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ) | |
False | |
>>> dmp_negative_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ) | |
True | |
""" | |
return K.is_negative(dmp_ground_LC(f, u, K)) | |
def dmp_positive_p(f, u, K): | |
""" | |
Return ``True`` if ``LC(f)`` is positive. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_positive_p | |
>>> dmp_positive_p([[ZZ(1)], [-ZZ(1)]], 1, ZZ) | |
True | |
>>> dmp_positive_p([[-ZZ(1)], [ZZ(1)]], 1, ZZ) | |
False | |
""" | |
return K.is_positive(dmp_ground_LC(f, u, K)) | |
def dup_from_dict(f, K): | |
""" | |
Create a ``K[x]`` polynomial from a ``dict``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_from_dict | |
>>> dup_from_dict({(0,): ZZ(7), (2,): ZZ(5), (4,): ZZ(1)}, ZZ) | |
[1, 0, 5, 0, 7] | |
>>> dup_from_dict({}, ZZ) | |
[] | |
""" | |
if not f: | |
return [] | |
n, h = max(f.keys()), [] | |
if isinstance(n, int): | |
for k in range(n, -1, -1): | |
h.append(f.get(k, K.zero)) | |
else: | |
(n,) = n | |
for k in range(n, -1, -1): | |
h.append(f.get((k,), K.zero)) | |
return dup_strip(h) | |
def dup_from_raw_dict(f, K): | |
""" | |
Create a ``K[x]`` polynomial from a raw ``dict``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_from_raw_dict | |
>>> dup_from_raw_dict({0: ZZ(7), 2: ZZ(5), 4: ZZ(1)}, ZZ) | |
[1, 0, 5, 0, 7] | |
""" | |
if not f: | |
return [] | |
n, h = max(f.keys()), [] | |
for k in range(n, -1, -1): | |
h.append(f.get(k, K.zero)) | |
return dup_strip(h) | |
def dmp_from_dict(f, u, K): | |
""" | |
Create a ``K[X]`` polynomial from a ``dict``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_from_dict | |
>>> dmp_from_dict({(0, 0): ZZ(3), (0, 1): ZZ(2), (2, 1): ZZ(1)}, 1, ZZ) | |
[[1, 0], [], [2, 3]] | |
>>> dmp_from_dict({}, 0, ZZ) | |
[] | |
""" | |
if not u: | |
return dup_from_dict(f, K) | |
if not f: | |
return dmp_zero(u) | |
coeffs = {} | |
for monom, coeff in f.items(): | |
head, tail = monom[0], monom[1:] | |
if head in coeffs: | |
coeffs[head][tail] = coeff | |
else: | |
coeffs[head] = { tail: coeff } | |
n, v, h = max(coeffs.keys()), u - 1, [] | |
for k in range(n, -1, -1): | |
coeff = coeffs.get(k) | |
if coeff is not None: | |
h.append(dmp_from_dict(coeff, v, K)) | |
else: | |
h.append(dmp_zero(v)) | |
return dmp_strip(h, u) | |
def dup_to_dict(f, K=None, zero=False): | |
""" | |
Convert ``K[x]`` polynomial to a ``dict``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dup_to_dict | |
>>> dup_to_dict([1, 0, 5, 0, 7]) | |
{(0,): 7, (2,): 5, (4,): 1} | |
>>> dup_to_dict([]) | |
{} | |
""" | |
if not f and zero: | |
return {(0,): K.zero} | |
n, result = len(f) - 1, {} | |
for k in range(0, n + 1): | |
if f[n - k]: | |
result[(k,)] = f[n - k] | |
return result | |
def dup_to_raw_dict(f, K=None, zero=False): | |
""" | |
Convert a ``K[x]`` polynomial to a raw ``dict``. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dup_to_raw_dict | |
>>> dup_to_raw_dict([1, 0, 5, 0, 7]) | |
{0: 7, 2: 5, 4: 1} | |
""" | |
if not f and zero: | |
return {0: K.zero} | |
n, result = len(f) - 1, {} | |
for k in range(0, n + 1): | |
if f[n - k]: | |
result[k] = f[n - k] | |
return result | |
def dmp_to_dict(f, u, K=None, zero=False): | |
""" | |
Convert a ``K[X]`` polynomial to a ``dict````. | |
Examples | |
======== | |
>>> from sympy.polys.densebasic import dmp_to_dict | |
>>> dmp_to_dict([[1, 0], [], [2, 3]], 1) | |
{(0, 0): 3, (0, 1): 2, (2, 1): 1} | |
>>> dmp_to_dict([], 0) | |
{} | |
""" | |
if not u: | |
return dup_to_dict(f, K, zero=zero) | |
if dmp_zero_p(f, u) and zero: | |
return {(0,)*(u + 1): K.zero} | |
n, v, result = dmp_degree(f, u), u - 1, {} | |
if n == ninf: | |
n = -1 | |
for k in range(0, n + 1): | |
h = dmp_to_dict(f[n - k], v) | |
for exp, coeff in h.items(): | |
result[(k,) + exp] = coeff | |
return result | |
def dmp_swap(f, i, j, u, K): | |
""" | |
Transform ``K[..x_i..x_j..]`` to ``K[..x_j..x_i..]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_swap | |
>>> f = ZZ.map([[[2], [1, 0]], []]) | |
>>> dmp_swap(f, 0, 1, 2, ZZ) | |
[[[2], []], [[1, 0], []]] | |
>>> dmp_swap(f, 1, 2, 2, ZZ) | |
[[[1], [2, 0]], [[]]] | |
>>> dmp_swap(f, 0, 2, 2, ZZ) | |
[[[1, 0]], [[2, 0], []]] | |
""" | |
if i < 0 or j < 0 or i > u or j > u: | |
raise IndexError("0 <= i < j <= %s expected" % u) | |
elif i == j: | |
return f | |
F, H = dmp_to_dict(f, u), {} | |
for exp, coeff in F.items(): | |
H[exp[:i] + (exp[j],) + | |
exp[i + 1:j] + | |
(exp[i],) + exp[j + 1:]] = coeff | |
return dmp_from_dict(H, u, K) | |
def dmp_permute(f, P, u, K): | |
""" | |
Return a polynomial in ``K[x_{P(1)},..,x_{P(n)}]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_permute | |
>>> f = ZZ.map([[[2], [1, 0]], []]) | |
>>> dmp_permute(f, [1, 0, 2], 2, ZZ) | |
[[[2], []], [[1, 0], []]] | |
>>> dmp_permute(f, [1, 2, 0], 2, ZZ) | |
[[[1], []], [[2, 0], []]] | |
""" | |
F, H = dmp_to_dict(f, u), {} | |
for exp, coeff in F.items(): | |
new_exp = [0]*len(exp) | |
for e, p in zip(exp, P): | |
new_exp[p] = e | |
H[tuple(new_exp)] = coeff | |
return dmp_from_dict(H, u, K) | |
def dmp_nest(f, l, K): | |
""" | |
Return a multivariate value nested ``l``-levels. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_nest | |
>>> dmp_nest([[ZZ(1)]], 2, ZZ) | |
[[[[1]]]] | |
""" | |
if not isinstance(f, list): | |
return dmp_ground(f, l) | |
for i in range(l): | |
f = [f] | |
return f | |
def dmp_raise(f, l, u, K): | |
""" | |
Return a multivariate polynomial raised ``l``-levels. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_raise | |
>>> f = ZZ.map([[], [1, 2]]) | |
>>> dmp_raise(f, 2, 1, ZZ) | |
[[[[]]], [[[1]], [[2]]]] | |
""" | |
if not l: | |
return f | |
if not u: | |
if not f: | |
return dmp_zero(l) | |
k = l - 1 | |
return [ dmp_ground(c, k) for c in f ] | |
v = u - 1 | |
return [ dmp_raise(c, l, v, K) for c in f ] | |
def dup_deflate(f, K): | |
""" | |
Map ``x**m`` to ``y`` in a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_deflate | |
>>> f = ZZ.map([1, 0, 0, 1, 0, 0, 1]) | |
>>> dup_deflate(f, ZZ) | |
(3, [1, 1, 1]) | |
""" | |
if dup_degree(f) <= 0: | |
return 1, f | |
g = 0 | |
for i in range(len(f)): | |
if not f[-i - 1]: | |
continue | |
g = igcd(g, i) | |
if g == 1: | |
return 1, f | |
return g, f[::g] | |
def dmp_deflate(f, u, K): | |
""" | |
Map ``x_i**m_i`` to ``y_i`` in a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_deflate | |
>>> f = ZZ.map([[1, 0, 0, 2], [], [3, 0, 0, 4]]) | |
>>> dmp_deflate(f, 1, ZZ) | |
((2, 3), [[1, 2], [3, 4]]) | |
""" | |
if dmp_zero_p(f, u): | |
return (1,)*(u + 1), f | |
F = dmp_to_dict(f, u) | |
B = [0]*(u + 1) | |
for M in F.keys(): | |
for i, m in enumerate(M): | |
B[i] = igcd(B[i], m) | |
for i, b in enumerate(B): | |
if not b: | |
B[i] = 1 | |
B = tuple(B) | |
if all(b == 1 for b in B): | |
return B, f | |
H = {} | |
for A, coeff in F.items(): | |
N = [ a // b for a, b in zip(A, B) ] | |
H[tuple(N)] = coeff | |
return B, dmp_from_dict(H, u, K) | |
def dup_multi_deflate(polys, K): | |
""" | |
Map ``x**m`` to ``y`` in a set of polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_multi_deflate | |
>>> f = ZZ.map([1, 0, 2, 0, 3]) | |
>>> g = ZZ.map([4, 0, 0]) | |
>>> dup_multi_deflate((f, g), ZZ) | |
(2, ([1, 2, 3], [4, 0])) | |
""" | |
G = 0 | |
for p in polys: | |
if dup_degree(p) <= 0: | |
return 1, polys | |
g = 0 | |
for i in range(len(p)): | |
if not p[-i - 1]: | |
continue | |
g = igcd(g, i) | |
if g == 1: | |
return 1, polys | |
G = igcd(G, g) | |
return G, tuple([ p[::G] for p in polys ]) | |
def dmp_multi_deflate(polys, u, K): | |
""" | |
Map ``x_i**m_i`` to ``y_i`` in a set of polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_multi_deflate | |
>>> f = ZZ.map([[1, 0, 0, 2], [], [3, 0, 0, 4]]) | |
>>> g = ZZ.map([[1, 0, 2], [], [3, 0, 4]]) | |
>>> dmp_multi_deflate((f, g), 1, ZZ) | |
((2, 1), ([[1, 0, 0, 2], [3, 0, 0, 4]], [[1, 0, 2], [3, 0, 4]])) | |
""" | |
if not u: | |
M, H = dup_multi_deflate(polys, K) | |
return (M,), H | |
F, B = [], [0]*(u + 1) | |
for p in polys: | |
f = dmp_to_dict(p, u) | |
if not dmp_zero_p(p, u): | |
for M in f.keys(): | |
for i, m in enumerate(M): | |
B[i] = igcd(B[i], m) | |
F.append(f) | |
for i, b in enumerate(B): | |
if not b: | |
B[i] = 1 | |
B = tuple(B) | |
if all(b == 1 for b in B): | |
return B, polys | |
H = [] | |
for f in F: | |
h = {} | |
for A, coeff in f.items(): | |
N = [ a // b for a, b in zip(A, B) ] | |
h[tuple(N)] = coeff | |
H.append(dmp_from_dict(h, u, K)) | |
return B, tuple(H) | |
def dup_inflate(f, m, K): | |
""" | |
Map ``y`` to ``x**m`` in a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_inflate | |
>>> f = ZZ.map([1, 1, 1]) | |
>>> dup_inflate(f, 3, ZZ) | |
[1, 0, 0, 1, 0, 0, 1] | |
""" | |
if m <= 0: | |
raise IndexError("'m' must be positive, got %s" % m) | |
if m == 1 or not f: | |
return f | |
result = [f[0]] | |
for coeff in f[1:]: | |
result.extend([K.zero]*(m - 1)) | |
result.append(coeff) | |
return result | |
def _rec_inflate(g, M, v, i, K): | |
"""Recursive helper for :func:`dmp_inflate`.""" | |
if not v: | |
return dup_inflate(g, M[i], K) | |
if M[i] <= 0: | |
raise IndexError("all M[i] must be positive, got %s" % M[i]) | |
w, j = v - 1, i + 1 | |
g = [ _rec_inflate(c, M, w, j, K) for c in g ] | |
result = [g[0]] | |
for coeff in g[1:]: | |
for _ in range(1, M[i]): | |
result.append(dmp_zero(w)) | |
result.append(coeff) | |
return result | |
def dmp_inflate(f, M, u, K): | |
""" | |
Map ``y_i`` to ``x_i**k_i`` in a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_inflate | |
>>> f = ZZ.map([[1, 2], [3, 4]]) | |
>>> dmp_inflate(f, (2, 3), 1, ZZ) | |
[[1, 0, 0, 2], [], [3, 0, 0, 4]] | |
""" | |
if not u: | |
return dup_inflate(f, M[0], K) | |
if all(m == 1 for m in M): | |
return f | |
else: | |
return _rec_inflate(f, M, u, 0, K) | |
def dmp_exclude(f, u, K): | |
""" | |
Exclude useless levels from ``f``. | |
Return the levels excluded, the new excluded ``f``, and the new ``u``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_exclude | |
>>> f = ZZ.map([[[1]], [[1], [2]]]) | |
>>> dmp_exclude(f, 2, ZZ) | |
([2], [[1], [1, 2]], 1) | |
""" | |
if not u or dmp_ground_p(f, None, u): | |
return [], f, u | |
J, F = [], dmp_to_dict(f, u) | |
for j in range(0, u + 1): | |
for monom in F.keys(): | |
if monom[j]: | |
break | |
else: | |
J.append(j) | |
if not J: | |
return [], f, u | |
f = {} | |
for monom, coeff in F.items(): | |
monom = list(monom) | |
for j in reversed(J): | |
del monom[j] | |
f[tuple(monom)] = coeff | |
u -= len(J) | |
return J, dmp_from_dict(f, u, K), u | |
def dmp_include(f, J, u, K): | |
""" | |
Include useless levels in ``f``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_include | |
>>> f = ZZ.map([[1], [1, 2]]) | |
>>> dmp_include(f, [2], 1, ZZ) | |
[[[1]], [[1], [2]]] | |
""" | |
if not J: | |
return f | |
F, f = dmp_to_dict(f, u), {} | |
for monom, coeff in F.items(): | |
monom = list(monom) | |
for j in J: | |
monom.insert(j, 0) | |
f[tuple(monom)] = coeff | |
u += len(J) | |
return dmp_from_dict(f, u, K) | |
def dmp_inject(f, u, K, front=False): | |
""" | |
Convert ``f`` from ``K[X][Y]`` to ``K[X,Y]``. | |
Examples | |
======== | |
>>> from sympy.polys.rings import ring | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_inject | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> dmp_inject([R(1), x + 2], 0, R.to_domain()) | |
([[[1]], [[1], [2]]], 2) | |
>>> dmp_inject([R(1), x + 2], 0, R.to_domain(), front=True) | |
([[[1]], [[1, 2]]], 2) | |
""" | |
f, h = dmp_to_dict(f, u), {} | |
v = K.ngens - 1 | |
for f_monom, g in f.items(): | |
g = g.to_dict() | |
for g_monom, c in g.items(): | |
if front: | |
h[g_monom + f_monom] = c | |
else: | |
h[f_monom + g_monom] = c | |
w = u + v + 1 | |
return dmp_from_dict(h, w, K.dom), w | |
def dmp_eject(f, u, K, front=False): | |
""" | |
Convert ``f`` from ``K[X,Y]`` to ``K[X][Y]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_eject | |
>>> dmp_eject([[[1]], [[1], [2]]], 2, ZZ['x', 'y']) | |
[1, x + 2] | |
""" | |
f, h = dmp_to_dict(f, u), {} | |
n = K.ngens | |
v = u - K.ngens + 1 | |
for monom, c in f.items(): | |
if front: | |
g_monom, f_monom = monom[:n], monom[n:] | |
else: | |
g_monom, f_monom = monom[-n:], monom[:-n] | |
if f_monom in h: | |
h[f_monom][g_monom] = c | |
else: | |
h[f_monom] = {g_monom: c} | |
for monom, c in h.items(): | |
h[monom] = K(c) | |
return dmp_from_dict(h, v - 1, K) | |
def dup_terms_gcd(f, K): | |
""" | |
Remove GCD of terms from ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_terms_gcd | |
>>> f = ZZ.map([1, 0, 1, 0, 0]) | |
>>> dup_terms_gcd(f, ZZ) | |
(2, [1, 0, 1]) | |
""" | |
if dup_TC(f, K) or not f: | |
return 0, f | |
i = 0 | |
for c in reversed(f): | |
if not c: | |
i += 1 | |
else: | |
break | |
return i, f[:-i] | |
def dmp_terms_gcd(f, u, K): | |
""" | |
Remove GCD of terms from ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_terms_gcd | |
>>> f = ZZ.map([[1, 0], [1, 0, 0], [], []]) | |
>>> dmp_terms_gcd(f, 1, ZZ) | |
((2, 1), [[1], [1, 0]]) | |
""" | |
if dmp_ground_TC(f, u, K) or dmp_zero_p(f, u): | |
return (0,)*(u + 1), f | |
F = dmp_to_dict(f, u) | |
G = monomial_min(*list(F.keys())) | |
if all(g == 0 for g in G): | |
return G, f | |
f = {} | |
for monom, coeff in F.items(): | |
f[monomial_div(monom, G)] = coeff | |
return G, dmp_from_dict(f, u, K) | |
def _rec_list_terms(g, v, monom): | |
"""Recursive helper for :func:`dmp_list_terms`.""" | |
d, terms = dmp_degree(g, v), [] | |
if not v: | |
for i, c in enumerate(g): | |
if not c: | |
continue | |
terms.append((monom + (d - i,), c)) | |
else: | |
w = v - 1 | |
for i, c in enumerate(g): | |
terms.extend(_rec_list_terms(c, w, monom + (d - i,))) | |
return terms | |
def dmp_list_terms(f, u, K, order=None): | |
""" | |
List all non-zero terms from ``f`` in the given order ``order``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_list_terms | |
>>> f = ZZ.map([[1, 1], [2, 3]]) | |
>>> dmp_list_terms(f, 1, ZZ) | |
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)] | |
>>> dmp_list_terms(f, 1, ZZ, order='grevlex') | |
[((1, 1), 1), ((1, 0), 1), ((0, 1), 2), ((0, 0), 3)] | |
""" | |
def sort(terms, O): | |
return sorted(terms, key=lambda term: O(term[0]), reverse=True) | |
terms = _rec_list_terms(f, u, ()) | |
if not terms: | |
return [((0,)*(u + 1), K.zero)] | |
if order is None: | |
return terms | |
else: | |
return sort(terms, monomial_key(order)) | |
def dup_apply_pairs(f, g, h, args, K): | |
""" | |
Apply ``h`` to pairs of coefficients of ``f`` and ``g``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_apply_pairs | |
>>> h = lambda x, y, z: 2*x + y - z | |
>>> dup_apply_pairs([1, 2, 3], [3, 2, 1], h, (1,), ZZ) | |
[4, 5, 6] | |
""" | |
n, m = len(f), len(g) | |
if n != m: | |
if n > m: | |
g = [K.zero]*(n - m) + g | |
else: | |
f = [K.zero]*(m - n) + f | |
result = [] | |
for a, b in zip(f, g): | |
result.append(h(a, b, *args)) | |
return dup_strip(result) | |
def dmp_apply_pairs(f, g, h, args, u, K): | |
""" | |
Apply ``h`` to pairs of coefficients of ``f`` and ``g``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dmp_apply_pairs | |
>>> h = lambda x, y, z: 2*x + y - z | |
>>> dmp_apply_pairs([[1], [2, 3]], [[3], [2, 1]], h, (1,), 1, ZZ) | |
[[4], [5, 6]] | |
""" | |
if not u: | |
return dup_apply_pairs(f, g, h, args, K) | |
n, m, v = len(f), len(g), u - 1 | |
if n != m: | |
if n > m: | |
g = dmp_zeros(n - m, v, K) + g | |
else: | |
f = dmp_zeros(m - n, v, K) + f | |
result = [] | |
for a, b in zip(f, g): | |
result.append(dmp_apply_pairs(a, b, h, args, v, K)) | |
return dmp_strip(result, u) | |
def dup_slice(f, m, n, K): | |
"""Take a continuous subsequence of terms of ``f`` in ``K[x]``. """ | |
k = len(f) | |
if k >= m: | |
M = k - m | |
else: | |
M = 0 | |
if k >= n: | |
N = k - n | |
else: | |
N = 0 | |
f = f[N:M] | |
while f and f[0] == K.zero: | |
f.pop(0) | |
if not f: | |
return [] | |
else: | |
return f + [K.zero]*m | |
def dmp_slice(f, m, n, u, K): | |
"""Take a continuous subsequence of terms of ``f`` in ``K[X]``. """ | |
return dmp_slice_in(f, m, n, 0, u, K) | |
def dmp_slice_in(f, m, n, j, u, K): | |
"""Take a continuous subsequence of terms of ``f`` in ``x_j`` in ``K[X]``. """ | |
if j < 0 or j > u: | |
raise IndexError("-%s <= j < %s expected, got %s" % (u, u, j)) | |
if not u: | |
return dup_slice(f, m, n, K) | |
f, g = dmp_to_dict(f, u), {} | |
for monom, coeff in f.items(): | |
k = monom[j] | |
if k < m or k >= n: | |
monom = monom[:j] + (0,) + monom[j + 1:] | |
if monom in g: | |
g[monom] += coeff | |
else: | |
g[monom] = coeff | |
return dmp_from_dict(g, u, K) | |
def dup_random(n, a, b, K): | |
""" | |
Return a polynomial of degree ``n`` with coefficients in ``[a, b]``. | |
Examples | |
======== | |
>>> from sympy.polys.domains import ZZ | |
>>> from sympy.polys.densebasic import dup_random | |
>>> dup_random(3, -10, 10, ZZ) #doctest: +SKIP | |
[-2, -8, 9, -4] | |
""" | |
f = [ K.convert(random.randint(a, b)) for _ in range(0, n + 1) ] | |
while not f[0]: | |
f[0] = K.convert(random.randint(a, b)) | |
return f | |