Spaces:
Running
Running
"""Arithmetics for dense recursive polynomials in ``K[x]`` or ``K[X]``. """ | |
from sympy.polys.densebasic import ( | |
dup_slice, | |
dup_LC, dmp_LC, | |
dup_degree, dmp_degree, | |
dup_strip, dmp_strip, | |
dmp_zero_p, dmp_zero, | |
dmp_one_p, dmp_one, | |
dmp_ground, dmp_zeros) | |
from sympy.polys.polyerrors import (ExactQuotientFailed, PolynomialDivisionFailed) | |
def dup_add_term(f, c, i, K): | |
""" | |
Add ``c*x**i`` to ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_add_term(x**2 - 1, ZZ(2), 4) | |
2*x**4 + x**2 - 1 | |
""" | |
if not c: | |
return f | |
n = len(f) | |
m = n - i - 1 | |
if i == n - 1: | |
return dup_strip([f[0] + c] + f[1:]) | |
else: | |
if i >= n: | |
return [c] + [K.zero]*(i - n) + f | |
else: | |
return f[:m] + [f[m] + c] + f[m + 1:] | |
def dmp_add_term(f, c, i, u, K): | |
""" | |
Add ``c(x_2..x_u)*x_0**i`` to ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_add_term(x*y + 1, 2, 2) | |
2*x**2 + x*y + 1 | |
""" | |
if not u: | |
return dup_add_term(f, c, i, K) | |
v = u - 1 | |
if dmp_zero_p(c, v): | |
return f | |
n = len(f) | |
m = n - i - 1 | |
if i == n - 1: | |
return dmp_strip([dmp_add(f[0], c, v, K)] + f[1:], u) | |
else: | |
if i >= n: | |
return [c] + dmp_zeros(i - n, v, K) + f | |
else: | |
return f[:m] + [dmp_add(f[m], c, v, K)] + f[m + 1:] | |
def dup_sub_term(f, c, i, K): | |
""" | |
Subtract ``c*x**i`` from ``f`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sub_term(2*x**4 + x**2 - 1, ZZ(2), 4) | |
x**2 - 1 | |
""" | |
if not c: | |
return f | |
n = len(f) | |
m = n - i - 1 | |
if i == n - 1: | |
return dup_strip([f[0] - c] + f[1:]) | |
else: | |
if i >= n: | |
return [-c] + [K.zero]*(i - n) + f | |
else: | |
return f[:m] + [f[m] - c] + f[m + 1:] | |
def dmp_sub_term(f, c, i, u, K): | |
""" | |
Subtract ``c(x_2..x_u)*x_0**i`` from ``f`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sub_term(2*x**2 + x*y + 1, 2, 2) | |
x*y + 1 | |
""" | |
if not u: | |
return dup_add_term(f, -c, i, K) | |
v = u - 1 | |
if dmp_zero_p(c, v): | |
return f | |
n = len(f) | |
m = n - i - 1 | |
if i == n - 1: | |
return dmp_strip([dmp_sub(f[0], c, v, K)] + f[1:], u) | |
else: | |
if i >= n: | |
return [dmp_neg(c, v, K)] + dmp_zeros(i - n, v, K) + f | |
else: | |
return f[:m] + [dmp_sub(f[m], c, v, K)] + f[m + 1:] | |
def dup_mul_term(f, c, i, K): | |
""" | |
Multiply ``f`` by ``c*x**i`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_mul_term(x**2 - 1, ZZ(3), 2) | |
3*x**4 - 3*x**2 | |
""" | |
if not c or not f: | |
return [] | |
else: | |
return [ cf * c for cf in f ] + [K.zero]*i | |
def dmp_mul_term(f, c, i, u, K): | |
""" | |
Multiply ``f`` by ``c(x_2..x_u)*x_0**i`` in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_mul_term(x**2*y + x, 3*y, 2) | |
3*x**4*y**2 + 3*x**3*y | |
""" | |
if not u: | |
return dup_mul_term(f, c, i, K) | |
v = u - 1 | |
if dmp_zero_p(f, u): | |
return f | |
if dmp_zero_p(c, v): | |
return dmp_zero(u) | |
else: | |
return [ dmp_mul(cf, c, v, K) for cf in f ] + dmp_zeros(i, v, K) | |
def dup_add_ground(f, c, K): | |
""" | |
Add an element of the ground domain to ``f``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_add_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4)) | |
x**3 + 2*x**2 + 3*x + 8 | |
""" | |
return dup_add_term(f, c, 0, K) | |
def dmp_add_ground(f, c, u, K): | |
""" | |
Add an element of the ground domain to ``f``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_add_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4)) | |
x**3 + 2*x**2 + 3*x + 8 | |
""" | |
return dmp_add_term(f, dmp_ground(c, u - 1), 0, u, K) | |
def dup_sub_ground(f, c, K): | |
""" | |
Subtract an element of the ground domain from ``f``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sub_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4)) | |
x**3 + 2*x**2 + 3*x | |
""" | |
return dup_sub_term(f, c, 0, K) | |
def dmp_sub_ground(f, c, u, K): | |
""" | |
Subtract an element of the ground domain from ``f``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sub_ground(x**3 + 2*x**2 + 3*x + 4, ZZ(4)) | |
x**3 + 2*x**2 + 3*x | |
""" | |
return dmp_sub_term(f, dmp_ground(c, u - 1), 0, u, K) | |
def dup_mul_ground(f, c, K): | |
""" | |
Multiply ``f`` by a constant value in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_mul_ground(x**2 + 2*x - 1, ZZ(3)) | |
3*x**2 + 6*x - 3 | |
""" | |
if not c or not f: | |
return [] | |
else: | |
return [ cf * c for cf in f ] | |
def dmp_mul_ground(f, c, u, K): | |
""" | |
Multiply ``f`` by a constant value in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_mul_ground(2*x + 2*y, ZZ(3)) | |
6*x + 6*y | |
""" | |
if not u: | |
return dup_mul_ground(f, c, K) | |
v = u - 1 | |
return [ dmp_mul_ground(cf, c, v, K) for cf in f ] | |
def dup_quo_ground(f, c, K): | |
""" | |
Quotient by a constant in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_quo_ground(3*x**2 + 2, ZZ(2)) | |
x**2 + 1 | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_quo_ground(3*x**2 + 2, QQ(2)) | |
3/2*x**2 + 1 | |
""" | |
if not c: | |
raise ZeroDivisionError('polynomial division') | |
if not f: | |
return f | |
if K.is_Field: | |
return [ K.quo(cf, c) for cf in f ] | |
else: | |
return [ cf // c for cf in f ] | |
def dmp_quo_ground(f, c, u, K): | |
""" | |
Quotient by a constant in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_quo_ground(2*x**2*y + 3*x, ZZ(2)) | |
x**2*y + x | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_quo_ground(2*x**2*y + 3*x, QQ(2)) | |
x**2*y + 3/2*x | |
""" | |
if not u: | |
return dup_quo_ground(f, c, K) | |
v = u - 1 | |
return [ dmp_quo_ground(cf, c, v, K) for cf in f ] | |
def dup_exquo_ground(f, c, K): | |
""" | |
Exact quotient by a constant in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_exquo_ground(x**2 + 2, QQ(2)) | |
1/2*x**2 + 1 | |
""" | |
if not c: | |
raise ZeroDivisionError('polynomial division') | |
if not f: | |
return f | |
return [ K.exquo(cf, c) for cf in f ] | |
def dmp_exquo_ground(f, c, u, K): | |
""" | |
Exact quotient by a constant in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_exquo_ground(x**2*y + 2*x, QQ(2)) | |
1/2*x**2*y + x | |
""" | |
if not u: | |
return dup_exquo_ground(f, c, K) | |
v = u - 1 | |
return [ dmp_exquo_ground(cf, c, v, K) for cf in f ] | |
def dup_lshift(f, n, K): | |
""" | |
Efficiently multiply ``f`` by ``x**n`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_lshift(x**2 + 1, 2) | |
x**4 + x**2 | |
""" | |
if not f: | |
return f | |
else: | |
return f + [K.zero]*n | |
def dup_rshift(f, n, K): | |
""" | |
Efficiently divide ``f`` by ``x**n`` in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_rshift(x**4 + x**2, 2) | |
x**2 + 1 | |
>>> R.dup_rshift(x**4 + x**2 + 2, 2) | |
x**2 + 1 | |
""" | |
return f[:-n] | |
def dup_abs(f, K): | |
""" | |
Make all coefficients positive in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_abs(x**2 - 1) | |
x**2 + 1 | |
""" | |
return [ K.abs(coeff) for coeff in f ] | |
def dmp_abs(f, u, K): | |
""" | |
Make all coefficients positive in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_abs(x**2*y - x) | |
x**2*y + x | |
""" | |
if not u: | |
return dup_abs(f, K) | |
v = u - 1 | |
return [ dmp_abs(cf, v, K) for cf in f ] | |
def dup_neg(f, K): | |
""" | |
Negate a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_neg(x**2 - 1) | |
-x**2 + 1 | |
""" | |
return [ -coeff for coeff in f ] | |
def dmp_neg(f, u, K): | |
""" | |
Negate a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_neg(x**2*y - x) | |
-x**2*y + x | |
""" | |
if not u: | |
return dup_neg(f, K) | |
v = u - 1 | |
return [ dmp_neg(cf, v, K) for cf in f ] | |
def dup_add(f, g, K): | |
""" | |
Add dense polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_add(x**2 - 1, x - 2) | |
x**2 + x - 3 | |
""" | |
if not f: | |
return g | |
if not g: | |
return f | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
if df == dg: | |
return dup_strip([ a + b for a, b in zip(f, g) ]) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = g[:k], g[k:] | |
return h + [ a + b for a, b in zip(f, g) ] | |
def dmp_add(f, g, u, K): | |
""" | |
Add dense polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_add(x**2 + y, x**2*y + x) | |
x**2*y + x**2 + x + y | |
""" | |
if not u: | |
return dup_add(f, g, K) | |
df = dmp_degree(f, u) | |
if df < 0: | |
return g | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
return f | |
v = u - 1 | |
if df == dg: | |
return dmp_strip([ dmp_add(a, b, v, K) for a, b in zip(f, g) ], u) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = g[:k], g[k:] | |
return h + [ dmp_add(a, b, v, K) for a, b in zip(f, g) ] | |
def dup_sub(f, g, K): | |
""" | |
Subtract dense polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sub(x**2 - 1, x - 2) | |
x**2 - x + 1 | |
""" | |
if not f: | |
return dup_neg(g, K) | |
if not g: | |
return f | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
if df == dg: | |
return dup_strip([ a - b for a, b in zip(f, g) ]) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = dup_neg(g[:k], K), g[k:] | |
return h + [ a - b for a, b in zip(f, g) ] | |
def dmp_sub(f, g, u, K): | |
""" | |
Subtract dense polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sub(x**2 + y, x**2*y + x) | |
-x**2*y + x**2 - x + y | |
""" | |
if not u: | |
return dup_sub(f, g, K) | |
df = dmp_degree(f, u) | |
if df < 0: | |
return dmp_neg(g, u, K) | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
return f | |
v = u - 1 | |
if df == dg: | |
return dmp_strip([ dmp_sub(a, b, v, K) for a, b in zip(f, g) ], u) | |
else: | |
k = abs(df - dg) | |
if df > dg: | |
h, f = f[:k], f[k:] | |
else: | |
h, g = dmp_neg(g[:k], u, K), g[k:] | |
return h + [ dmp_sub(a, b, v, K) for a, b in zip(f, g) ] | |
def dup_add_mul(f, g, h, K): | |
""" | |
Returns ``f + g*h`` where ``f, g, h`` are in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_add_mul(x**2 - 1, x - 2, x + 2) | |
2*x**2 - 5 | |
""" | |
return dup_add(f, dup_mul(g, h, K), K) | |
def dmp_add_mul(f, g, h, u, K): | |
""" | |
Returns ``f + g*h`` where ``f, g, h`` are in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_add_mul(x**2 + y, x, x + 2) | |
2*x**2 + 2*x + y | |
""" | |
return dmp_add(f, dmp_mul(g, h, u, K), u, K) | |
def dup_sub_mul(f, g, h, K): | |
""" | |
Returns ``f - g*h`` where ``f, g, h`` are in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sub_mul(x**2 - 1, x - 2, x + 2) | |
3 | |
""" | |
return dup_sub(f, dup_mul(g, h, K), K) | |
def dmp_sub_mul(f, g, h, u, K): | |
""" | |
Returns ``f - g*h`` where ``f, g, h`` are in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sub_mul(x**2 + y, x, x + 2) | |
-2*x + y | |
""" | |
return dmp_sub(f, dmp_mul(g, h, u, K), u, K) | |
def dup_mul(f, g, K): | |
""" | |
Multiply dense polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_mul(x - 2, x + 2) | |
x**2 - 4 | |
""" | |
if f == g: | |
return dup_sqr(f, K) | |
if not (f and g): | |
return [] | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
n = max(df, dg) + 1 | |
if n < 100: | |
h = [] | |
for i in range(0, df + dg + 1): | |
coeff = K.zero | |
for j in range(max(0, i - dg), min(df, i) + 1): | |
coeff += f[j]*g[i - j] | |
h.append(coeff) | |
return dup_strip(h) | |
else: | |
# Use Karatsuba's algorithm (divide and conquer), see e.g.: | |
# Joris van der Hoeven, Relax But Don't Be Too Lazy, | |
# J. Symbolic Computation, 11 (2002), section 3.1.1. | |
n2 = n//2 | |
fl, gl = dup_slice(f, 0, n2, K), dup_slice(g, 0, n2, K) | |
fh = dup_rshift(dup_slice(f, n2, n, K), n2, K) | |
gh = dup_rshift(dup_slice(g, n2, n, K), n2, K) | |
lo, hi = dup_mul(fl, gl, K), dup_mul(fh, gh, K) | |
mid = dup_mul(dup_add(fl, fh, K), dup_add(gl, gh, K), K) | |
mid = dup_sub(mid, dup_add(lo, hi, K), K) | |
return dup_add(dup_add(lo, dup_lshift(mid, n2, K), K), | |
dup_lshift(hi, 2*n2, K), K) | |
def dmp_mul(f, g, u, K): | |
""" | |
Multiply dense polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_mul(x*y + 1, x) | |
x**2*y + x | |
""" | |
if not u: | |
return dup_mul(f, g, K) | |
if f == g: | |
return dmp_sqr(f, u, K) | |
df = dmp_degree(f, u) | |
if df < 0: | |
return f | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
return g | |
h, v = [], u - 1 | |
for i in range(0, df + dg + 1): | |
coeff = dmp_zero(v) | |
for j in range(max(0, i - dg), min(df, i) + 1): | |
coeff = dmp_add(coeff, dmp_mul(f[j], g[i - j], v, K), v, K) | |
h.append(coeff) | |
return dmp_strip(h, u) | |
def dup_sqr(f, K): | |
""" | |
Square dense polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_sqr(x**2 + 1) | |
x**4 + 2*x**2 + 1 | |
""" | |
df, h = len(f) - 1, [] | |
for i in range(0, 2*df + 1): | |
c = K.zero | |
jmin = max(0, i - df) | |
jmax = min(i, df) | |
n = jmax - jmin + 1 | |
jmax = jmin + n // 2 - 1 | |
for j in range(jmin, jmax + 1): | |
c += f[j]*f[i - j] | |
c += c | |
if n & 1: | |
elem = f[jmax + 1] | |
c += elem**2 | |
h.append(c) | |
return dup_strip(h) | |
def dmp_sqr(f, u, K): | |
""" | |
Square dense polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_sqr(x**2 + x*y + y**2) | |
x**4 + 2*x**3*y + 3*x**2*y**2 + 2*x*y**3 + y**4 | |
""" | |
if not u: | |
return dup_sqr(f, K) | |
df = dmp_degree(f, u) | |
if df < 0: | |
return f | |
h, v = [], u - 1 | |
for i in range(0, 2*df + 1): | |
c = dmp_zero(v) | |
jmin = max(0, i - df) | |
jmax = min(i, df) | |
n = jmax - jmin + 1 | |
jmax = jmin + n // 2 - 1 | |
for j in range(jmin, jmax + 1): | |
c = dmp_add(c, dmp_mul(f[j], f[i - j], v, K), v, K) | |
c = dmp_mul_ground(c, K(2), v, K) | |
if n & 1: | |
elem = dmp_sqr(f[jmax + 1], v, K) | |
c = dmp_add(c, elem, v, K) | |
h.append(c) | |
return dmp_strip(h, u) | |
def dup_pow(f, n, K): | |
""" | |
Raise ``f`` to the ``n``-th power in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_pow(x - 2, 3) | |
x**3 - 6*x**2 + 12*x - 8 | |
""" | |
if not n: | |
return [K.one] | |
if n < 0: | |
raise ValueError("Cannot raise polynomial to a negative power") | |
if n == 1 or not f or f == [K.one]: | |
return f | |
g = [K.one] | |
while True: | |
n, m = n//2, n | |
if m % 2: | |
g = dup_mul(g, f, K) | |
if not n: | |
break | |
f = dup_sqr(f, K) | |
return g | |
def dmp_pow(f, n, u, K): | |
""" | |
Raise ``f`` to the ``n``-th power in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_pow(x*y + 1, 3) | |
x**3*y**3 + 3*x**2*y**2 + 3*x*y + 1 | |
""" | |
if not u: | |
return dup_pow(f, n, K) | |
if not n: | |
return dmp_one(u, K) | |
if n < 0: | |
raise ValueError("Cannot raise polynomial to a negative power") | |
if n == 1 or dmp_zero_p(f, u) or dmp_one_p(f, u, K): | |
return f | |
g = dmp_one(u, K) | |
while True: | |
n, m = n//2, n | |
if m & 1: | |
g = dmp_mul(g, f, u, K) | |
if not n: | |
break | |
f = dmp_sqr(f, u, K) | |
return g | |
def dup_pdiv(f, g, K): | |
""" | |
Polynomial pseudo-division in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_pdiv(x**2 + 1, 2*x - 4) | |
(2*x + 4, 20) | |
""" | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
q, r, dr = [], f, df | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return q, r | |
N = df - dg + 1 | |
lc_g = dup_LC(g, K) | |
while True: | |
lc_r = dup_LC(r, K) | |
j, N = dr - dg, N - 1 | |
Q = dup_mul_ground(q, lc_g, K) | |
q = dup_add_term(Q, lc_r, j, K) | |
R = dup_mul_ground(r, lc_g, K) | |
G = dup_mul_term(g, lc_r, j, K) | |
r = dup_sub(R, G, K) | |
_dr, dr = dr, dup_degree(r) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
c = lc_g**N | |
q = dup_mul_ground(q, c, K) | |
r = dup_mul_ground(r, c, K) | |
return q, r | |
def dup_prem(f, g, K): | |
""" | |
Polynomial pseudo-remainder in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_prem(x**2 + 1, 2*x - 4) | |
20 | |
""" | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
r, dr = f, df | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return r | |
N = df - dg + 1 | |
lc_g = dup_LC(g, K) | |
while True: | |
lc_r = dup_LC(r, K) | |
j, N = dr - dg, N - 1 | |
R = dup_mul_ground(r, lc_g, K) | |
G = dup_mul_term(g, lc_r, j, K) | |
r = dup_sub(R, G, K) | |
_dr, dr = dr, dup_degree(r) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
return dup_mul_ground(r, lc_g**N, K) | |
def dup_pquo(f, g, K): | |
""" | |
Polynomial exact pseudo-quotient in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_pquo(x**2 - 1, 2*x - 2) | |
2*x + 2 | |
>>> R.dup_pquo(x**2 + 1, 2*x - 4) | |
2*x + 4 | |
""" | |
return dup_pdiv(f, g, K)[0] | |
def dup_pexquo(f, g, K): | |
""" | |
Polynomial pseudo-quotient in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_pexquo(x**2 - 1, 2*x - 2) | |
2*x + 2 | |
>>> R.dup_pexquo(x**2 + 1, 2*x - 4) | |
Traceback (most recent call last): | |
... | |
ExactQuotientFailed: [2, -4] does not divide [1, 0, 1] | |
""" | |
q, r = dup_pdiv(f, g, K) | |
if not r: | |
return q | |
else: | |
raise ExactQuotientFailed(f, g) | |
def dmp_pdiv(f, g, u, K): | |
""" | |
Polynomial pseudo-division in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_pdiv(x**2 + x*y, 2*x + 2) | |
(2*x + 2*y - 2, -4*y + 4) | |
""" | |
if not u: | |
return dup_pdiv(f, g, K) | |
df = dmp_degree(f, u) | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
raise ZeroDivisionError("polynomial division") | |
q, r, dr = dmp_zero(u), f, df | |
if df < dg: | |
return q, r | |
N = df - dg + 1 | |
lc_g = dmp_LC(g, K) | |
while True: | |
lc_r = dmp_LC(r, K) | |
j, N = dr - dg, N - 1 | |
Q = dmp_mul_term(q, lc_g, 0, u, K) | |
q = dmp_add_term(Q, lc_r, j, u, K) | |
R = dmp_mul_term(r, lc_g, 0, u, K) | |
G = dmp_mul_term(g, lc_r, j, u, K) | |
r = dmp_sub(R, G, u, K) | |
_dr, dr = dr, dmp_degree(r, u) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
c = dmp_pow(lc_g, N, u - 1, K) | |
q = dmp_mul_term(q, c, 0, u, K) | |
r = dmp_mul_term(r, c, 0, u, K) | |
return q, r | |
def dmp_prem(f, g, u, K): | |
""" | |
Polynomial pseudo-remainder in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_prem(x**2 + x*y, 2*x + 2) | |
-4*y + 4 | |
""" | |
if not u: | |
return dup_prem(f, g, K) | |
df = dmp_degree(f, u) | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
raise ZeroDivisionError("polynomial division") | |
r, dr = f, df | |
if df < dg: | |
return r | |
N = df - dg + 1 | |
lc_g = dmp_LC(g, K) | |
while True: | |
lc_r = dmp_LC(r, K) | |
j, N = dr - dg, N - 1 | |
R = dmp_mul_term(r, lc_g, 0, u, K) | |
G = dmp_mul_term(g, lc_r, j, u, K) | |
r = dmp_sub(R, G, u, K) | |
_dr, dr = dr, dmp_degree(r, u) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
c = dmp_pow(lc_g, N, u - 1, K) | |
return dmp_mul_term(r, c, 0, u, K) | |
def dmp_pquo(f, g, u, K): | |
""" | |
Polynomial exact pseudo-quotient in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**2 + x*y | |
>>> g = 2*x + 2*y | |
>>> h = 2*x + 2 | |
>>> R.dmp_pquo(f, g) | |
2*x | |
>>> R.dmp_pquo(f, h) | |
2*x + 2*y - 2 | |
""" | |
return dmp_pdiv(f, g, u, K)[0] | |
def dmp_pexquo(f, g, u, K): | |
""" | |
Polynomial pseudo-quotient in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**2 + x*y | |
>>> g = 2*x + 2*y | |
>>> h = 2*x + 2 | |
>>> R.dmp_pexquo(f, g) | |
2*x | |
>>> R.dmp_pexquo(f, h) | |
Traceback (most recent call last): | |
... | |
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []] | |
""" | |
q, r = dmp_pdiv(f, g, u, K) | |
if dmp_zero_p(r, u): | |
return q | |
else: | |
raise ExactQuotientFailed(f, g) | |
def dup_rr_div(f, g, K): | |
""" | |
Univariate division with remainder over a ring. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_rr_div(x**2 + 1, 2*x - 4) | |
(0, x**2 + 1) | |
""" | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
q, r, dr = [], f, df | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return q, r | |
lc_g = dup_LC(g, K) | |
while True: | |
lc_r = dup_LC(r, K) | |
if lc_r % lc_g: | |
break | |
c = K.exquo(lc_r, lc_g) | |
j = dr - dg | |
q = dup_add_term(q, c, j, K) | |
h = dup_mul_term(g, c, j, K) | |
r = dup_sub(r, h, K) | |
_dr, dr = dr, dup_degree(r) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
return q, r | |
def dmp_rr_div(f, g, u, K): | |
""" | |
Multivariate division with remainder over a ring. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_rr_div(x**2 + x*y, 2*x + 2) | |
(0, x**2 + x*y) | |
""" | |
if not u: | |
return dup_rr_div(f, g, K) | |
df = dmp_degree(f, u) | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
raise ZeroDivisionError("polynomial division") | |
q, r, dr = dmp_zero(u), f, df | |
if df < dg: | |
return q, r | |
lc_g, v = dmp_LC(g, K), u - 1 | |
while True: | |
lc_r = dmp_LC(r, K) | |
c, R = dmp_rr_div(lc_r, lc_g, v, K) | |
if not dmp_zero_p(R, v): | |
break | |
j = dr - dg | |
q = dmp_add_term(q, c, j, u, K) | |
h = dmp_mul_term(g, c, j, u, K) | |
r = dmp_sub(r, h, u, K) | |
_dr, dr = dr, dmp_degree(r, u) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
return q, r | |
def dup_ff_div(f, g, K): | |
""" | |
Polynomial division with remainder over a field. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_ff_div(x**2 + 1, 2*x - 4) | |
(1/2*x + 1, 5) | |
""" | |
df = dup_degree(f) | |
dg = dup_degree(g) | |
q, r, dr = [], f, df | |
if not g: | |
raise ZeroDivisionError("polynomial division") | |
elif df < dg: | |
return q, r | |
lc_g = dup_LC(g, K) | |
while True: | |
lc_r = dup_LC(r, K) | |
c = K.exquo(lc_r, lc_g) | |
j = dr - dg | |
q = dup_add_term(q, c, j, K) | |
h = dup_mul_term(g, c, j, K) | |
r = dup_sub(r, h, K) | |
_dr, dr = dr, dup_degree(r) | |
if dr < dg: | |
break | |
elif dr == _dr and not K.is_Exact: | |
# remove leading term created by rounding error | |
r = dup_strip(r[1:]) | |
dr = dup_degree(r) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
return q, r | |
def dmp_ff_div(f, g, u, K): | |
""" | |
Polynomial division with remainder over a field. | |
Examples | |
======== | |
>>> from sympy.polys import ring, QQ | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_ff_div(x**2 + x*y, 2*x + 2) | |
(1/2*x + 1/2*y - 1/2, -y + 1) | |
""" | |
if not u: | |
return dup_ff_div(f, g, K) | |
df = dmp_degree(f, u) | |
dg = dmp_degree(g, u) | |
if dg < 0: | |
raise ZeroDivisionError("polynomial division") | |
q, r, dr = dmp_zero(u), f, df | |
if df < dg: | |
return q, r | |
lc_g, v = dmp_LC(g, K), u - 1 | |
while True: | |
lc_r = dmp_LC(r, K) | |
c, R = dmp_ff_div(lc_r, lc_g, v, K) | |
if not dmp_zero_p(R, v): | |
break | |
j = dr - dg | |
q = dmp_add_term(q, c, j, u, K) | |
h = dmp_mul_term(g, c, j, u, K) | |
r = dmp_sub(r, h, u, K) | |
_dr, dr = dr, dmp_degree(r, u) | |
if dr < dg: | |
break | |
elif not (dr < _dr): | |
raise PolynomialDivisionFailed(f, g, K) | |
return q, r | |
def dup_div(f, g, K): | |
""" | |
Polynomial division with remainder in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_div(x**2 + 1, 2*x - 4) | |
(0, x**2 + 1) | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_div(x**2 + 1, 2*x - 4) | |
(1/2*x + 1, 5) | |
""" | |
if K.is_Field: | |
return dup_ff_div(f, g, K) | |
else: | |
return dup_rr_div(f, g, K) | |
def dup_rem(f, g, K): | |
""" | |
Returns polynomial remainder in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_rem(x**2 + 1, 2*x - 4) | |
x**2 + 1 | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_rem(x**2 + 1, 2*x - 4) | |
5 | |
""" | |
return dup_div(f, g, K)[1] | |
def dup_quo(f, g, K): | |
""" | |
Returns exact polynomial quotient in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_quo(x**2 + 1, 2*x - 4) | |
0 | |
>>> R, x = ring("x", QQ) | |
>>> R.dup_quo(x**2 + 1, 2*x - 4) | |
1/2*x + 1 | |
""" | |
return dup_div(f, g, K)[0] | |
def dup_exquo(f, g, K): | |
""" | |
Returns polynomial quotient in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_exquo(x**2 - 1, x - 1) | |
x + 1 | |
>>> R.dup_exquo(x**2 + 1, 2*x - 4) | |
Traceback (most recent call last): | |
... | |
ExactQuotientFailed: [2, -4] does not divide [1, 0, 1] | |
""" | |
q, r = dup_div(f, g, K) | |
if not r: | |
return q | |
else: | |
raise ExactQuotientFailed(f, g) | |
def dmp_div(f, g, u, K): | |
""" | |
Polynomial division with remainder in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_div(x**2 + x*y, 2*x + 2) | |
(0, x**2 + x*y) | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_div(x**2 + x*y, 2*x + 2) | |
(1/2*x + 1/2*y - 1/2, -y + 1) | |
""" | |
if K.is_Field: | |
return dmp_ff_div(f, g, u, K) | |
else: | |
return dmp_rr_div(f, g, u, K) | |
def dmp_rem(f, g, u, K): | |
""" | |
Returns polynomial remainder in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_rem(x**2 + x*y, 2*x + 2) | |
x**2 + x*y | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_rem(x**2 + x*y, 2*x + 2) | |
-y + 1 | |
""" | |
return dmp_div(f, g, u, K)[1] | |
def dmp_quo(f, g, u, K): | |
""" | |
Returns exact polynomial quotient in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ, QQ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_quo(x**2 + x*y, 2*x + 2) | |
0 | |
>>> R, x,y = ring("x,y", QQ) | |
>>> R.dmp_quo(x**2 + x*y, 2*x + 2) | |
1/2*x + 1/2*y - 1/2 | |
""" | |
return dmp_div(f, g, u, K)[0] | |
def dmp_exquo(f, g, u, K): | |
""" | |
Returns polynomial quotient in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> f = x**2 + x*y | |
>>> g = x + y | |
>>> h = 2*x + 2 | |
>>> R.dmp_exquo(f, g) | |
x | |
>>> R.dmp_exquo(f, h) | |
Traceback (most recent call last): | |
... | |
ExactQuotientFailed: [[2], [2]] does not divide [[1], [1, 0], []] | |
""" | |
q, r = dmp_div(f, g, u, K) | |
if dmp_zero_p(r, u): | |
return q | |
else: | |
raise ExactQuotientFailed(f, g) | |
def dup_max_norm(f, K): | |
""" | |
Returns maximum norm of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_max_norm(-x**2 + 2*x - 3) | |
3 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return max(dup_abs(f, K)) | |
def dmp_max_norm(f, u, K): | |
""" | |
Returns maximum norm of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_max_norm(2*x*y - x - 3) | |
3 | |
""" | |
if not u: | |
return dup_max_norm(f, K) | |
v = u - 1 | |
return max(dmp_max_norm(c, v, K) for c in f) | |
def dup_l1_norm(f, K): | |
""" | |
Returns l1 norm of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_l1_norm(2*x**3 - 3*x**2 + 1) | |
6 | |
""" | |
if not f: | |
return K.zero | |
else: | |
return sum(dup_abs(f, K)) | |
def dmp_l1_norm(f, u, K): | |
""" | |
Returns l1 norm of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_l1_norm(2*x*y - x - 3) | |
6 | |
""" | |
if not u: | |
return dup_l1_norm(f, K) | |
v = u - 1 | |
return sum(dmp_l1_norm(c, v, K) for c in f) | |
def dup_l2_norm_squared(f, K): | |
""" | |
Returns squared l2 norm of a polynomial in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_l2_norm_squared(2*x**3 - 3*x**2 + 1) | |
14 | |
""" | |
return sum([coeff**2 for coeff in f], K.zero) | |
def dmp_l2_norm_squared(f, u, K): | |
""" | |
Returns squared l2 norm of a polynomial in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_l2_norm_squared(2*x*y - x - 3) | |
14 | |
""" | |
if not u: | |
return dup_l2_norm_squared(f, K) | |
v = u - 1 | |
return sum(dmp_l2_norm_squared(c, v, K) for c in f) | |
def dup_expand(polys, K): | |
""" | |
Multiply together several polynomials in ``K[x]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x = ring("x", ZZ) | |
>>> R.dup_expand([x**2 - 1, x, 2]) | |
2*x**3 - 2*x | |
""" | |
if not polys: | |
return [K.one] | |
f = polys[0] | |
for g in polys[1:]: | |
f = dup_mul(f, g, K) | |
return f | |
def dmp_expand(polys, u, K): | |
""" | |
Multiply together several polynomials in ``K[X]``. | |
Examples | |
======== | |
>>> from sympy.polys import ring, ZZ | |
>>> R, x,y = ring("x,y", ZZ) | |
>>> R.dmp_expand([x**2 + y**2, x + 1]) | |
x**3 + x**2 + x*y**2 + y**2 | |
""" | |
if not polys: | |
return dmp_one(u, K) | |
f = polys[0] | |
for g in polys[1:]: | |
f = dmp_mul(f, g, u, K) | |
return f | |